401 research outputs found

    Recent climatological trend of the Saharan heat low and its impact on the West African climate

    Get PDF
    The Saharan heat low (SHL) plays a pivotal role in the West African monsoon system in spring and summer. The recent trend in SHL activity has been analysed using two sets of numerical weather prediction (NWP) model reanalyses and Atmospheric Models Intercomparison Project simulations from 15 climate models performed in the framework of the 5th Coupled Models Intercomparison Project (CMIP5) exercise. A local increase of temperature in the Sahara during the 90s is found in the two sets of NWP models temperature. This increase is stronger within the SHL region than over the surrounding areas. Using different temporal filters (under 25 days, 25–100 days and above 300 days), we show that this is accompanied by a slight but widespread increase of temperature, and a change in the filtered signal under 25 days during the transition period of the 90s. We also show that SHL pulsations occurring at different time scales impact the West Africa climate on a variety of spatial scales, from the regional scale (for the high band pass) to the synoptic scale (for the low band pass signal). Despite a large variability in the temporal trends for 15 climate models from the CMIP5 project, the warming trend in the 90s is observed in the models ensemble mean. Nevertheless, large discrepancies are found between the NWP models reanalyses and the climate model simulations regarding the spatial and temporal evolutions of the SHL as well as its impact on West African climate at the different time scales. These comparisons also reveal that climate models represent the West African monsoon interactions with SHL pulsations quite differently. We provide recommendations to use some of them depending on the time scales of the processes at play (synoptic, seasonal, interannual) and based on key SHL metrics (location, mean intensity, global trend, interaction with the West African monsoon dynamics).JRC.H.7-Climate Risk Managemen

    Water vapor Raman-lidar observations from multiple sites in the framework of WaLiNeAs

    Get PDF
    During the Water Vapor Lidar Network Assimilation (WaLiNeAs) campaign, 8 lidars specifically designed to measure water vapor mixing ratio (WVMR) profiles were deployed on the western Mediterranean coast. The main objectives were to investigate the water vapor content during case studies of heavy precipitation events in the coastal Western Mediterranean and assess the impact of high spatio-temporal WVMR data on numerical weather prediction forecasts by means of state–of–the–art assimilation techniques. Given the increasing occurrence of extreme events due to climate change, WaLiNeAs is the first program in Europe to provide network–like, simultaneous and continuous water vapor profile measurements. This paper focuses on the WVMR profiling datasets obtained from three of the lidars managed by the French component of the WaLiNeAs team. These lidars were deployed in the towns of Coursan, Grau du Roi and Cannes. This measurement setup enabled monitoring of the water vapor content within the low troposphere along a period of three months over autumn – winter 2022 and four months in summer 2023. The lidars measured the WVMR profiles from the surface up to approximately 6–10 km at night, and 1–2 km during daytime; with a vertical resolution of 100 m and a time sampling between 15 – 30 min, selected to meet the needs of weather forecasting with an uncertainty lower than 0.4 g kg-1. The paper presents details about the instruments, the experimental strategy, as well as the datasets given in NETcdf format. The final dataset is divided in two datasets, the first with a time resolution of 15 min, which contains a total of 26 423 WVMR vertical profiles and the second with a time resolution of 30 min to improve the signal to noise ratio and signal altitude range

    Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Get PDF
    International audienceThe radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP). We focus on two days (13 and 14 June 2006) of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar EmbarquĂ© pour l'Ă©tude de l'AtmosphĂšre: Nuages Dynamique, Rayonnement et cycle de l'Eau) and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS) and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1) was also observed locally in some limited part of the dust plumes. The uncertainty on the heating rate retrievals in the optically thickest part of the dust plume was estimated to be between 0.5 and 1.4 K day−1. During nighttime much smaller values of heating/cooling are retrieved (less than ±1 K day−1). Furthermore, cooling is observed as the result of the longwave forcing in the dust layer, while warming is observed below the dust layer, in the monsoon layer

    Pressure Measurements Using an Airborne Differential Absorption Lidar

    Get PDF
    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines

    A network of water vapor Raman lidars for improving heavy precipitation forecasting in southern France: introducing the WaLiNeAs initiative

    Get PDF
    The version of record is available online at: http://dx.doi.org/10.1007/s42865-021-00037-6Extreme heavy precipitation events (HPEs) pose a threat to human life but remain difficult to predict because of the lack of adequate high frequency and high-resolution water vapor (WV) observations in the low troposphere (below 3 km). To fill this observational gap, we aim at implementing an integrated prediction tool, coupling network measurements of WV profiles, and a numerical weather prediction model to precisely estimate the amount, timing, and location of rainfall associated with HPEs in southern France (struck byÂż~Âż7 HPEs per year on average during the fall). The Water vapor Lidar Network Assimilation (WaLiNeAs) project will deploy a network of 6 autonomous Raman WV lidars around the Western Mediterranean to provide measurements with high vertical resolution and accuracy to be assimilated in the French Application of Research to Operations at Mesoscale (AROME-France) model, using a four-dimensional ensemble-variational approach with 15-min updates. This integrated prediction tool is expected to enhance the model capability for kilometer-scale prediction of HPEs over southern France up to 48 h in advance. The field campaign is scheduled to start early September 2022, to cover the period most propitious to heavy precipitation events in southern France. The Raman WV lidar network will be operated by a consortium of French, German, Italian, and Spanish research groups. This project will lead to recommendations on the lidar data processing for future operational exploitation in numerical weather prediction (NWP) systems.Peer ReviewedPostprint (published version

    Observing the Forest Canopy with a New Ultra-Violet Compact Airborne Lidar

    Get PDF
    We have developed a new airborne UV lidar for the forest canopy and deployed it in the Landes forest (France). It is the first one that: (i) operates at 355 nm for emitting energetic pulses of 16 mJ at 20 Hz while fulfilling eye-safety regulations and (ii) is flown onboard an ultra-light airplane for enhanced flight flexibility. Laser footprints at ground level were 2.4 m wide for a flying altitude of 300 m. Three test areas of ∌500 × 500 m2 with Maritime pines of different ages were investigated. We used a threshold method adapted for this lidar to accurately extract from its waveforms detailed forest canopy vertical structure: canopy top, tree crown base and undergrowth heights. Good detection sensitivity enabled the observation of ground returns underneath the trees. Statistical and one-to-one comparisons with ground measurements by field foresters indicated a mean absolute accuracy of ∌1 m. Sensitivity tests on detection threshold showed the importance of signal to noise ratio and footprint size for a proper detection of the canopy vertical structure. This UV-lidar is intended for future innovative applications of simultaneous observation of forest canopy, laser-induced vegetation fluorescence and atmospheric aerosols

    Characterization of dust emission from alluvial sources using aircraft observations and high-resolution modeling

    Get PDF
    International audienceWe investigate mineral dust emission from alluvial sediments within the upland region in northern Mauritania in the vicinity of a decaying nocturnal low-level jet (LLJ). For the first time, the impact of valleys that are embedded in a rather homogeneous surrounding is investigated with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, satellite observations, and model simulations and analyzed in order to provide complementary information at different horizontal scales. Observations by the LEANDRE Nouvelle Generation backscatter lidar system flying aboard the French Falcon 20 aircraft were taken along five parallel flight legs perpendicular to the orientation of the main valley system dominating the topography of the study area. Results from a comparison of lidar-derived extinction coefficients with topography and aerial photographs confirm the relevance of (1) alluvial sediments at the valley bottoms as a dust source, and (2) the break-down of the nocturnal LLJ as a trigger for dust emission in this region. An evaluation of the AROME regional model, forecasting dust at high resolution (5 km grid), points toward an under-representation of alluvial dust sources in this region. This is also evident from simulations by the MesoNH research model. Although MesoNH simulations show higher dust loadings than AROME, which are more comparable to the observations, both models underestimate the dust concentrations within the boundary layer compared to lidar observations. A sensitivity study on the impact of horizontal grid spacing (5 km versus 1 km) highlights the importance of spatial resolution on simulated dust loadings

    Validation of Aeolus wind products over the tropical Atlantic using radiosondes

    Get PDF
    Since its launch by the European Space Agency in 2018, the Aeolus satellite has been using the first Doppler wind lidar in space to acquire three-dimensional atmospheric wind profiles around the globe. Especially in the tropics, these observations compensate for the currently limited number of other wind observations, making an assessment of the quality of Aeolus wind products in this region crucial for numerical weather prediction. To evaluate the quality of the Aeolus L2B wind products across the tropical Atlantic Ocean, 20 radiosondes corresponding to Aeolus overpasses were launched from the islands of Sal, Saint Croix and Puerto Rico during August-September 2021 as part of the Joint Aeolus Tropical Atlantic Campaign. During this period, Aeolus sampled winds within a complex environment with a variety of cloud types in the vicinity of the Inter-tropical Convergence Zone and aerosol particles from Saharan dust outbreaks. On average, the validation for Aeolus Rayleigh-clear revealed a random error of 3.8 – 4.3 m s–1 between 2–16 km and 4.3 – 4.8 m s–1 between 16–20 km, with a systematic error of -0.5±0.2 m s–1. For Mie-cloudy, the random error between 2–16 km is 1.1 – 2.3 m s–1 and the systematic error is -0.9 ±0.3 m s–1. It is therefore concluded that Rayleigh-clear winds do not satisfy the random error requirement of the mission, whereas Mie-cloudy winds do so, when considering the standard error. Below clouds or within dust layers, the quality of Rayleigh-clear observations are degraded when the useful signal is reduced. In these conditions, we also noticed an underestimation of the L2B estimated error. Gross outliers which we define with large deviations from the radiosonde but low error estimates account for less than 5% of the data. These outliers appear at all altitudes and under all environmental conditions; however, their root-cause remains unknown. Finally, we confirm the presence of an orbital-dependent bias observed with both radiosondes and European Centre for Medium-Range Weather Forecasts model equivalents. The results of this study contribute to a better characterization of the Aeolus wind product in different atmospheric conditions and provide valuable information for further improvement of the wind retrieval algorithm
    • 

    corecore