45 research outputs found

    Développement de microréacteur pour la synthÚse de radio-traceurs pour l'imagerie médicale (TEP)

    Get PDF
    Cette Ă©tude concerne l'optimisation, la conception et la caractĂ©risation de microrĂ©acteurs, de type multicanaux, appliquĂ©s Ă  l'Ă©lectrosynthĂšse organique de composĂ©s fluorĂ©s Ă  intĂ©rĂȘt mĂ©dical tels que le 2-Fluoro- 2-Deoxy-D-Glucose (18FDG). Les microsystĂšmes ont connu un dĂ©veloppement important ces derniĂšres annĂ©es dans le domaine de la chimie fine oĂč la volontĂ© est de dĂ©velopper des outils toujours plus compĂ©titifs. Les microrĂ©acteurs appliquĂ©s Ă  la synthĂšse offrent l’avantage d’un rapport surface sur volume de la zone rĂ©actionnelle Ă©levĂ© (> 100 cm-1), ce qui amĂ©liore nettement les transferts de masse et d’énergie et permet de traiter de trĂšs faibles quantitĂ©s dans des conditions plus sĂ»res et plus respectueuses de l’environnement. L’élĂ©ment de base du microrĂ©acteur est souvent constituĂ© d’un simple microcanal qu’il est nĂ©cessaire de dupliquer pour fournir le dĂ©bit de production adaptĂ© Ă  une application donnĂ©e. Ainsi, un microrĂ©acteur sera souvent composĂ© d’une sĂ©rie de microcanaux disposĂ©s en parallĂšle et connectant un canal distributeur et un canal collecteur. Cette configuration peut entraĂźner une faible uniformitĂ© de la distribution de l’écoulement dans les diffĂ©rents microcanaux de rĂ©action et il est particuliĂšrement important d’optimiser la gĂ©omĂ©trie du microrĂ©acteur complet pour tendre vers une distribution uniforme des temps de sĂ©jour (DTS). Dans le cas de la synthĂšse Ă©lectrochimique, les microcanaux sont directement gravĂ©s dans deux Ă©lectrodes placĂ©es en vis-Ă -vis et sĂ©parĂ©es par une membrane Ă©changeuse d’ions. Une optimisation prĂ©liminaire de la DTS au sein d’une Ă©lectrode composĂ©e de microcanaux parallĂšles de section rectangulaire est rĂ©alisĂ©e. L’arrivĂ©e et la sortie du fluide s’effectue par l’intermĂ©diaire de deux canaux distributeur et collecteur de section Ă©galement rectangulaire, mais non constante. L’optimisation vise Ă  dĂ©terminer une Ă©volution linĂ©aire optimale de la largeur de ces canaux distributeur et collecteur. Un modĂšle analytique basĂ© sur des hypothĂšses simplificatrices permet de calculer les diffĂ©rentes pertes de charge ainsi que les dĂ©bits dans chaque microcanal, dans le cas d’un Ă©coulement laminaire de liquide. Les rĂ©sultats obtenus sont ensuite confirmĂ©s par des simulations numĂ©riques 3-D, plus prĂ©cises. Un modĂšle hybride combinant les simulations numĂ©riques pour les canaux distributeur et collecteur et le modĂšle analytique pour les microcanaux parallĂšles est Ă©galement dĂ©veloppĂ©. Il permet d’augmenter la finesse du maillage dans les zones sensibles de l’écoulement, sans nĂ©cessitĂ© d’accroĂźtre les ressources informatiques (mĂ©moire et temps de simulation). Les rĂ©sultats obtenus montrent un trĂšs bon accord entre les simulations numĂ©riques 3-D, le modĂšle hybride et le modĂšle analytique. Sur un exemple de 10 microcanaux parallĂšles, il est montrĂ© que dans le cas de la gĂ©omĂ©trie initiale, pour laquelle les canaux collecteur et distributeur sont de section constante, des Ă©carts de l’ordre de 50 % existent entre les dĂ©bits traversant les microcanaux latĂ©raux et centraux. AprĂšs optimisation, cet Ă©cart est rĂ©duit Ă  moins de 0,1 %. Le modĂšle analytique est ensuite Ă©tendu au cas d’écoulements gazeux en prenant en compte les effets non linĂ©aires et antagonistes de la rarĂ©faction et de la compressibilitĂ© de l’écoulement. La rarĂ©faction est ici caractĂ©risĂ©e par un nombre de Knudsen compris entre 0 et 0,1 et se traduit pas des sauts de vitesse Ă  la paroi ; les Ă©coulements dans ce rĂ©gime modĂ©rĂ©ment rarĂ©fiĂ© sont alors correctement modĂ©lisĂ©s par les Ă©quations compressibles de Navier Stokes associĂ©es Ă  des conditions de glissement du second ordre en Knudsen, en prenant en compte la gĂ©omĂ©trie tridimensionnelle des microcanaux de rĂ©action et des canaux collecteur et distributeur. Dans le cas de la gĂ©omĂ©trie initiale, les Ă©carts entre les dĂ©bits massiques des canaux latĂ©raux et centraux atteint 48 % ; aprĂšs optimisation, il n’est pas possible d’aboutir Ă  une distribution des temps de sĂ©jour parfaitement uniforme, mais cet Ă©cart est considĂ©rablement rĂ©duit et devient infĂ©rieur Ă  2 %. A l’aide du modĂšle analytique prĂ©cĂ©dant, deux types d’électrodes sont conçues : l’une est composĂ©e de 150 microcanaux de section rectangulaire (gravĂ©s par DRIE sur support silicium) et l’autre de 152 microcanaux de section semi-elliptique (rĂ©alisĂ©s par gravure mĂ©canique). Un bilan thermique du systĂšme conduit Ă  la conception d’un Ă©changeur de chaleur intĂ©grĂ© aux Ă©lectrodes, permettant une rĂ©gulation fine de la tempĂ©rature du mĂ©lange rĂ©actionnel. Dans le but de rĂ©aliser la rĂ©action de fluoration Ă©lectrochimique du 2-Deoxy-D-Glucose (DG) en 2- Fluoro-2-Deoxy-D-Glucose (18FDG), l’optimisation des conditions opĂ©ratoires est rĂ©alisĂ©e en microrĂ©acteur ; le comportement de diffĂ©rents solvants (CH3CN, DMF, DME, CH3OH) et diffĂ©rents agents de fluoration (Et3N- 3HF, CsF) est mis en Ă©vidence et le choix se porte principalement sur l’utilisation du solvant binaire acĂ©tonitrile / dimĂ©toxyĂ©thane (CH3CN / DME) et de la triĂ©thyalmine (Et3N-3HF) en tant qu’agent de fluoration. Des rĂ©sultats encourageants sont mis en Ă©vidence par analyse en RMN du fluor des produits de la rĂ©action. Par ailleurs, il est montrĂ© que le solvant DME ((CH3OCH2)2) est fluorĂ© ; en effet, quatre produits de rĂ©action sont mis en Ă©vidence (2 produits monofluorĂ©s et 2 produits difluorĂ©s) avec des conversions atteignant 27 % pour l’un des produits monofluorĂ©s. ABSTRACT : This study focuses on the optimisation, design and characterization of microreactors, of multichannel type, applied to the organic electrosyntheses of fluorinated compounds of medical interest such as the 2-Fluoro-2-Deoxy-D-Glucose (18FDG). Microsystems have known an important development these last years in the field of fine chemicals where the aim is to develop increasingly competitive tools. The microreactors applied to synthesis offer a reaction zone with high surface to volume ratio (> 100 cm-1), which significantly improves mass and energy transfers and allows treating small quantities in safer conditions and a better respect of environment. The basic element of the microreactor is often composed of a single microchannel, which is necessary to duplicate in order to provide the suitable production rate for a given application. Thus, a microreactor is often composed of a series of microchannels arranged in parallel and connecting a distributing channel to a collecting one. This configuration can result in poor uniformity of flow distribution among the reaction microchannels and it is particularly important to optimize the geometry of the microreactor in order to obtain a uniform residence time distribution (RTD). In the case of electrochemical synthesis, microchannels are directly etched into two electrodes facing each other and separated by an ion exchange membrane. A preliminary optimisation of the RTD in an electrode composed of parallel microchannels with rectangular cross-section is performed. The fluid inlet and outlet are connected to a distributing and a collecting channel with non constant rectangular cross-section. The aim of the optimisation is to determine an optimal linear evolution of the width of the distributing and collecting channels. An analytical model based on simplifying assumptions allows calculating the various pressure drops and the flowrate in each microchannel, in the case of a laminar liquid flow. The obtained results are then confirmed by more accurate 3-D numerical simulations. A hybrid model combining numerical simulations for the distributing and collecting channels and the analytical model for the parallel microchannels is also developed. This model allows a more refined mesh in the sensitive areas of the flow, without requiring additional numerical effort (memory and simulation time). The results show a good agreement between the 3-D numerical simulations, the hybrid model and the analytical model. On an example of 10 parallel microchannels, it is shown that in the case of the initial geometry (with a constant cross-section of collecting and distributing channels), the flowrate difference through the lateral and the central microchannels is in the order of 50%. After optimization, this difference is reduced to less than 0.1%. The analytical model is then extended to the case of gas flows, taking into account nonlinear and antagonist effects of rarefaction and compressibility. Rarefaction is characterized by the value of the Knudsen number which remains lower than 0.1; the flow in this moderately rarefied regime is accurately modelled by the compressible Navier-Stokes equations associated with second-order slip boundary conditions, taking into account the three-dimensional geometry of the reaction microchannels and of the collecting and distributing channels. In the case of the initial geometry, the mass flowrate difference between lateral and central channels reaches 48%; after optimization, it is not possible to achieve a perfectly uniform residence time distribution, but this difference is considerably reduced and becomes less than 2%. Using the previous analytical model, two types of electrodes are designed: one is composed of 150 microchannels with rectangular cross-section (etched by DRIE on a silicon wafer) and the second composed of 152 microchannels with semi-elliptical cross-section (made by mechanical etching). A thermal balance of the system leads to the design of a heat exchanger directly integrated to the electrodes, allowing a fine control of the temperature of the reaction mixture. In order to perform the electrochemical fluorination of the 2-Deoxy-D-Glucose (DG) in 2-Fluoro-2-Deoxy-D-Glucose (18FDG), the optimisation of operating conditions is performed in the microreactor; the behaviour of several solvents (CH3CN, DMF, DME, CH3OH) and several fluorinated agents (Et3N-3HF, CsF) is highlighted and the choice is focused on the binary acetonitrile/dimethoxyethane solvent (CH3CN / DME) and the triethylamine as fluorinated agent. Encouraging results are obtained for reaction products by NMR fluorine. Moreover, it is shown that the DME solvent is also fluorinated. Four reaction products (2 monofluorinated and 2 difluorinated products), are obtained with a conversion up to 27% for one of the monofluorinated products

    Développement de microréacteur pour la synthÚse de radio-traceurs pour l'imagerie médicale (TEP)

    Get PDF
    Cette Ă©tude concerne l'optimisation, la conception et la caractĂ©risation de microrĂ©acteurs, de type multicanaux, appliquĂ©s Ă  l'Ă©lectrosynthĂšse organique de composĂ©s fluorĂ©s Ă  intĂ©rĂȘt mĂ©dical tels que le 2-Fluoro- 2-Deoxy-D-Glucose (18FDG). Les microsystĂšmes ont connu un dĂ©veloppement important ces derniĂšres annĂ©es dans le domaine de la chimie fine oĂč la volontĂ© est de dĂ©velopper des outils toujours plus compĂ©titifs. Les microrĂ©acteurs appliquĂ©s Ă  la synthĂšse offrent l avantage d un rapport surface sur volume de la zone rĂ©actionnelle Ă©levĂ© (> 100 cm-1), ce qui amĂ©liore nettement les transferts de masse et d Ă©nergie et permet de traiter de trĂšs faibles quantitĂ©s dans des conditions plus sĂ»res et plus respectueuses de l environnement. L Ă©lĂ©ment de base du microrĂ©acteur est souvent constituĂ© d un simple microcanal qu il est nĂ©cessaire de dupliquer pour fournir le dĂ©bit de production adaptĂ© Ă  une application donnĂ©e. Ainsi, un microrĂ©acteur sera souvent composĂ© d une sĂ©rie de microcanaux disposĂ©s en parallĂšle et connectant un canal distributeur et un canal collecteur. Cette configuration peut entraĂźner une faible uniformitĂ© de la distribution de l Ă©coulement dans les diffĂ©rents microcanaux de rĂ©action et il est particuliĂšrement important d optimiser la gĂ©omĂ©trie du microrĂ©acteur complet pour tendre vers une distribution uniforme des temps de sĂ©jour (DTS). Dans le cas de la synthĂšse Ă©lectrochimique, les microcanaux sont directement gravĂ©s dans deux Ă©lectrodes placĂ©es en vis-Ă -vis et sĂ©parĂ©es par une membrane Ă©changeuse d ions. Une optimisation prĂ©liminaire de la DTS au sein d une Ă©lectrode composĂ©e de microcanaux parallĂšles de section rectangulaire est rĂ©alisĂ©e. L arrivĂ©e et la sortie du fluide s effectue par l intermĂ©diaire de deux canaux distributeur et collecteur de section Ă©galement rectangulaire, mais non constante. L optimisation vise Ă  dĂ©terminer une Ă©volution linĂ©aire optimale de la largeur de ces canaux distributeur et collecteur. Un modĂšle analytique basĂ© sur des hypothĂšses simplificatrices permet de calculer les diffĂ©rentes pertes de charge ainsi que les dĂ©bits dans chaque microcanal, dans le cas d un Ă©coulement laminaire de liquide. Les rĂ©sultats obtenus sont ensuite confirmĂ©s par des simulations numĂ©riques 3-D, plus prĂ©cises. Un modĂšle hybride combinant les simulations numĂ©riques pour les canaux distributeur et collecteur et le modĂšle analytique pour les microcanaux parallĂšles est Ă©galement dĂ©veloppĂ©. Il permet d augmenter la finesse du maillage dans les zones sensibles de l Ă©coulement, sans nĂ©cessitĂ© d accroĂźtre les ressources informatiques (mĂ©moire et temps de simulation). Les rĂ©sultats obtenus montrent un trĂšs bon accord entre les simulations numĂ©riques 3-D, le modĂšle hybride et le modĂšle analytique. Sur un exemple de 10 microcanaux parallĂšles, il est montrĂ© que dans le cas de la gĂ©omĂ©trie initiale, pour laquelle les canaux collecteur et distributeur sont de section constante, des Ă©carts de l ordre de 50 % existent entre les dĂ©bits traversant les microcanaux latĂ©raux et centraux. AprĂšs optimisation, cet Ă©cart est rĂ©duit Ă  moins de 0,1 %. Le modĂšle analytique est ensuite Ă©tendu au cas d Ă©coulements gazeux en prenant en compte les effets non linĂ©aires et antagonistes de la rarĂ©faction et de la compressibilitĂ© de l Ă©coulement. La rarĂ©faction est ici caractĂ©risĂ©e par un nombre de Knudsen compris entre 0 et 0,1 et se traduit pas des sauts de vitesse Ă  la paroi ; les Ă©coulements dans ce rĂ©gime modĂ©rĂ©ment rarĂ©fiĂ© sont alors correctement modĂ©lisĂ©s par les Ă©quations compressibles de Navier Stokes associĂ©es Ă  des conditions de glissement du second ordre en Knudsen, en prenant en compte la gĂ©omĂ©trie tridimensionnelle des microcanaux de rĂ©action et des canaux collecteur et distributeur. Dans le cas de la gĂ©omĂ©trie initiale, les Ă©carts entre les dĂ©bits massiques des canaux latĂ©raux et centraux atteint 48 % ; aprĂšs optimisation, il n est pas possible d aboutir Ă  une distribution des temps de sĂ©jour parfaitement uniforme, mais cet Ă©cart est considĂ©rablement rĂ©duit et devient infĂ©rieur Ă  2 %. A l aide du modĂšle analytique prĂ©cĂ©dant, deux types d Ă©lectrodes sont conçues : l une est composĂ©e de 150 microcanaux de section rectangulaire (gravĂ©s par DRIE sur support silicium) et l autre de 152 microcanaux de section semi-elliptique (rĂ©alisĂ©s par gravure mĂ©canique). Un bilan thermique du systĂšme conduit Ă  la conception d un Ă©changeur de chaleur intĂ©grĂ© aux Ă©lectrodes, permettant une rĂ©gulation fine de la tempĂ©rature du mĂ©lange rĂ©actionnel. Dans le but de rĂ©aliser la rĂ©action de fluoration Ă©lectrochimique du 2-Deoxy-D-Glucose (DG) en 2- Fluoro-2-Deoxy-D-Glucose (18FDG), l optimisation des conditions opĂ©ratoires est rĂ©alisĂ©e en microrĂ©acteur ; le comportement de diffĂ©rents solvants (CH3CN, DMF, DME, CH3OH) et diffĂ©rents agents de fluoration (Et3N- 3HF, CsF) est mis en Ă©vidence et le choix se porte principalement sur l utilisation du solvant binaire acĂ©tonitrile / dimĂ©toxyĂ©thane (CH3CN / DME) et de la triĂ©thyalmine (Et3N-3HF) en tant qu agent de fluoration. Des rĂ©sultats encourageants sont mis en Ă©vidence par analyse en RMN du fluor des produits de la rĂ©action. Par ailleurs, il est montrĂ© que le solvant DME ((CH3OCH2)2) est fluorĂ© ; en effet, quatre produits de rĂ©action sont mis en Ă©vidence (2 produits monofluorĂ©s et 2 produits difluorĂ©s) avec des conversions atteignant 27 % pour l un des produits monofluorĂ©s.This study focuses on the optimisation, design and characterization of microreactors, of multichannel type, applied to the organic electrosyntheses of fluorinated compounds of medical interest such as the 2-Fluoro-2-Deoxy-D-Glucose (18FDG). Microsystems have known an important development these last years in the field of fine chemicals where the aim is to develop increasingly competitive tools. The microreactors applied to synthesis offer a reaction zone with high surface to volume ratio (> 100 cm-1), which significantly improves mass and energy transfers and allows treating small quantities in safer conditions and a better respect of environment. The basic element of the microreactor is often composed of a single microchannel, which is necessary to duplicate in order to provide the suitable production rate for a given application. Thus, a microreactor is often composed of a series of microchannels arranged in parallel and connecting a distributing channel to a collecting one. This configuration can result in poor uniformity of flow distribution among the reaction microchannels and it is particularly important to optimize the geometry of the microreactor in order to obtain a uniform residence time distribution (RTD). In the case of electrochemical synthesis, microchannels are directly etched into two electrodes facing each other and separated by an ion exchange membrane. A preliminary optimisation of the RTD in an electrode composed of parallel microchannels with rectangular cross-section is performed. The fluid inlet and outlet are connected to a distributing and a collecting channel with non constant rectangular cross-section. The aim of the optimisation is to determine an optimal linear evolution of the width of the distributing and collecting channels. An analytical model based on simplifying assumptions allows calculating the various pressure drops and the flowrate in each microchannel, in the case of a laminar liquid flow. The obtained results are then confirmed by more accurate 3-D numerical simulations. A hybrid model combining numerical simulations for the distributing and collecting channels and the analytical model for the parallel microchannels is also developed. This model allows a more refined mesh in the sensitive areas of the flow, without requiring additional numerical effort (memory and simulation time). The results show a good agreement between the 3-D numerical simulations, the hybrid model and the analytical model. On an example of 10 parallel microchannels, it is shown that in the case of the initial geometry (with a constant cross-section of collecting and distributing channels), the flowrate difference through the lateral and the central microchannels is in the order of 50%. After optimization, this difference is reduced to less than 0.1%. The analytical model is then extended to the case of gas flows, taking into account nonlinear and antagonist effects of rarefaction and compressibility. Rarefaction is characterized by the value of the Knudsen number which remains lower than 0.1; the flow in this moderately rarefied regime is accurately modelled by the compressible Navier-Stokes equations associated with second-order slip boundary conditions, taking into account the three-dimensional geometry of the reaction microchannels and of the collecting and distributing channels. In the case of the initial geometry, the mass flowrate difference between lateral and central channels reaches 48%; after optimization, it is not possible to achieve a perfectly uniform residence time distribution, but this difference is considerably reduced and becomes less than 2%. Using the previous analytical model, two types of electrodes are designed: one is composed of 150 microchannels with rectangular cross-section (etched by DRIE on a silicon wafer) and the second composed of 152 microchannels with semi-elliptical cross-section (made by mechanical etching). A thermal balance of the system leads to the design of a heat exchanger directly integrated to the electrodes, allowing a fine control of the temperature of the reaction mixture. In order to perform the electrochemical fluorination of the 2-Deoxy-D-Glucose (DG) in 2-Fluoro-2-Deoxy-D-Glucose (18FDG), the optimisation of operating conditions is performed in the microreactor; the behaviour of several solvents (CH3CN, DMF, DME, CH3OH) and several fluorinated agents (Et3N-3HF, CsF) is highlighted and the choice is focused on the binary acetonitrile/dimethoxyethane solvent (CH3CN / DME) and the triethylamine as fluorinated agent. Encouraging results are obtained for reaction products by NMR fluorine. Moreover, it is shown that the DME solvent is also fluorinated. Four reaction products (2 monofluorinated and 2 difluorinated products), are obtained with a conversion up to 27% for one of the monofluorinated products.TOULOUSE-INP (315552154) / SudocSudocFranceF

    La Combe Joubert : archeological and geological contribution of a paleolithic excavation in Luberon

    Get PDF
    Une fouille archĂ©ologique rĂ©alisĂ©e durant l’étĂ© 2001 sur la commune de CĂ©reste (Alpes-de-Haute-Provence) a permis de mettre en Ă©vidence un site prĂ©historique comprenant un important outillage de silex. Les caractĂ©ristiques de cet assemblage archĂ©ologique autorisent un rapprochement avec les phases anciennes du PalĂ©olithique. Ces donnĂ©es viennent approfondir nos connaissances sur les premiĂšres occupations humaines en Luberon et d’une maniĂšre plus gĂ©nĂ©rale dans le Sud- Est de la France.An archeological excavation in CĂ©reste (Alpes-de- Haute-Provence) during summer 2001 has revealed a prehistorical site including an important flint assemblage. Its characteristics enable to correlate them to ancient periods of Paleolithic. These informations deepen our knowledge of the first human settlements in Luberon and more generally in south-east France

    Optimal design of multi-channel microreactor for uniform residence time distribution

    Get PDF
    Multi-channel microreactors can be used for various applications that require chemical or electrochemical reactions in either liquid, gaseous or multi phase. For an optimal control of the chemical reactions, one key parameter for the design of such microreactors is the residence time distribution of the fluid, which should be as uniform as possible in the series of microchannels that make up the core of the reactor. Based on simplifying assumptions, an analytical model is proposed for optimizing the design of the collecting and distributing channels which supply the series of rectangular microchannels of the reactor, in the case of liquid flows. The accuracy of this analytical approach is discussed after comparison with CFD simulations and hybrid analytical-CFD calculations that allow an improved refinement of the meshing in the most complex zones of the flow. The analytical model is then extended to the case of microchannels with other cross-sections (trapezoidal or circular segment) and to gaseous flows, in the continuum and slip flow regimes. In the latter case, the model is based on second-order slip flow boundary conditions, and takes into account the compressibility as well as the rarefaction of the gas flow

    Developement of microreactors dedicated to electro-organic syntheses of probes molecules applied to medical imaging (PET scan)

    No full text
    Cette Ă©tude concerne l'optimisation, la conception et la caractĂ©risation de microrĂ©acteurs, de type multicanaux, appliquĂ©s Ă  l'Ă©lectrosynthĂšse organique de composĂ©s fluorĂ©s Ă  intĂ©rĂȘt mĂ©dical tels que le 2-Fluoro- 2-Deoxy-D-Glucose (18FDG). Les microsystĂšmes ont connu un dĂ©veloppement important ces derniĂšres annĂ©es dans le domaine de la chimie fine oĂč la volontĂ© est de dĂ©velopper des outils toujours plus compĂ©titifs. Les microrĂ©acteurs appliquĂ©s Ă  la synthĂšse offrent l’avantage d’un rapport surface sur volume de la zone rĂ©actionnelle Ă©levĂ© (> 100 cm-1), ce qui amĂ©liore nettement les transferts de masse et d’énergie et permet de traiter de trĂšs faibles quantitĂ©s dans des conditions plus sĂ»res et plus respectueuses de l’environnement. L’élĂ©ment de base du microrĂ©acteur est souvent constituĂ© d’un simple microcanal qu’il est nĂ©cessaire de dupliquer pour fournir le dĂ©bit de production adaptĂ© Ă  une application donnĂ©e. Ainsi, un microrĂ©acteur sera souvent composĂ© d’une sĂ©rie de microcanaux disposĂ©s en parallĂšle et connectant un canal distributeur et un canal collecteur. Cette configuration peut entraĂźner une faible uniformitĂ© de la distribution de l’écoulement dans les diffĂ©rents microcanaux de rĂ©action et il est particuliĂšrement important d’optimiser la gĂ©omĂ©trie du microrĂ©acteur complet pour tendre vers une distribution uniforme des temps de sĂ©jour (DTS). Dans le cas de la synthĂšse Ă©lectrochimique, les microcanaux sont directement gravĂ©s dans deux Ă©lectrodes placĂ©es en vis-Ă -vis et sĂ©parĂ©es par une membrane Ă©changeuse d’ions. Une optimisation prĂ©liminaire de la DTS au sein d’une Ă©lectrode composĂ©e de microcanaux parallĂšles de section rectangulaire est rĂ©alisĂ©e. L’arrivĂ©e et la sortie du fluide s’effectue par l’intermĂ©diaire de deux canaux distributeur et collecteur de section Ă©galement rectangulaire, mais non constante. L’optimisation vise Ă  dĂ©terminer une Ă©volution linĂ©aire optimale de la largeur de ces canaux distributeur et collecteur. Un modĂšle analytique basĂ© sur des hypothĂšses simplificatrices permet de calculer les diffĂ©rentes pertes de charge ainsi que les dĂ©bits dans chaque microcanal, dans le cas d’un Ă©coulement laminaire de liquide. Les rĂ©sultats obtenus sont ensuite confirmĂ©s par des simulations numĂ©riques 3-D, plus prĂ©cises. Un modĂšle hybride combinant les simulations numĂ©riques pour les canaux distributeur et collecteur et le modĂšle analytique pour les microcanaux parallĂšles est Ă©galement dĂ©veloppĂ©. Il permet d’augmenter la finesse du maillage dans les zones sensibles de l’écoulement, sans nĂ©cessitĂ© d’accroĂźtre les ressources informatiques (mĂ©moire et temps de simulation). Les rĂ©sultats obtenus montrent un trĂšs bon accord entre les simulations numĂ©riques 3-D, le modĂšle hybride et le modĂšle analytique. Sur un exemple de 10 microcanaux parallĂšles, il est montrĂ© que dans le cas de la gĂ©omĂ©trie initiale, pour laquelle les canaux collecteur et distributeur sont de section constante, des Ă©carts de l’ordre de 50 % existent entre les dĂ©bits traversant les microcanaux latĂ©raux et centraux. AprĂšs optimisation, cet Ă©cart est rĂ©duit Ă  moins de 0,1 %. Le modĂšle analytique est ensuite Ă©tendu au cas d’écoulements gazeux en prenant en compte les effets non linĂ©aires et antagonistes de la rarĂ©faction et de la compressibilitĂ© de l’écoulement. La rarĂ©faction est ici caractĂ©risĂ©e par un nombre de Knudsen compris entre 0 et 0,1 et se traduit pas des sauts de vitesse Ă  la paroi ; les Ă©coulements dans ce rĂ©gime modĂ©rĂ©ment rarĂ©fiĂ© sont alors correctement modĂ©lisĂ©s par les Ă©quations compressibles de Navier Stokes associĂ©es Ă  des conditions de glissement du second ordre en Knudsen, en prenant en compte la gĂ©omĂ©trie tridimensionnelle des microcanaux de rĂ©action et des canaux collecteur et distributeur.This study focuses on the optimisation, design and characterization of microreactors, of multichannel type, applied to the organic electrosyntheses of fluorinated compounds of medical interest such as the 2-Fluoro-2-Deoxy-D-Glucose (18FDG). Microsystems have known an important development these last years in the field of fine chemicals where the aim is to develop increasingly competitive tools. The microreactors applied to synthesis offer a reaction zone with high surface to volume ratio (> 100 cm-1), which significantly improves mass and energy transfers and allows treating small quantities in safer conditions and a better respect of environment. The basic element of the microreactor is often composed of a single microchannel, which is necessary to duplicate in order to provide the suitable production rate for a given application. Thus, a microreactor is often composed of a series of microchannels arranged in parallel and connecting a distributing channel to a collecting one. This configuration can result in poor uniformity of flow distribution among the reaction microchannels and it is particularly important to optimize the geometry of the microreactor in order to obtain a uniform residence time distribution (RTD). In the case of electrochemical synthesis, microchannels are directly etched into two electrodes facing each other and separated by an ion exchange membrane. A preliminary optimisation of the RTD in an electrode composed of parallel microchannels with rectangular cross-section is performed. The fluid inlet and outlet are connected to a distributing and a collecting channel with non constant rectangular cross-section. The aim of the optimisation is to determine an optimal linear evolution of the width of the distributing and collecting channels. An analytical model based on simplifying assumptions allows calculating the various pressure drops and the flowrate in each microchannel, in the case of a laminar liquid flow. The obtained results are then confirmed by more accurate 3-D numerical simulations. A hybrid model combining numerical simulations for the distributing and collecting channels and the analytical model for the parallel microchannels is also developed. This model allows a more refined mesh in the sensitive areas of the flow, without requiring additional numerical effort (memory and simulation time). The results show a good agreement between the 3-D numerical simulations, the hybrid model and the analytical model. On an example of 10 parallel microchannels, it is shown that in the case of the initial geometry (with a constant cross-section of collecting and distributing channels), the flowrate difference through the lateral and the central microchannels is in the order of 50%. After optimization, this difference is reduced to less than 0.1%. The analytical model is then extended to the case of gas flows, taking into account nonlinear and antagonist effects of rarefaction and compressibility. Rarefaction is characterized by the value of the Knudsen number which remains lower than 0.1; the flow in this moderately rarefied regime is accurately modelled by the compressible Navier-Stokes equations associated with second-order slip boundary conditions, taking into account the three-dimensional geometry of the reaction microchannels and of the collecting and distributing channels

    How changes in interfacial pH lead to new voltammetric features: the case of the electrochemical oxidation of hydrazine

    Get PDF
    International audienceThe electrochemical oxidation of hydrazine was investigated in strongly and weakly pH buffered solutions to reveal the role of buffer capacity in proton-electron transfer redox reactions. In sufficiently buffered solutions, a single voltammetric feature was observed. However, increasing the hydrazine concentration (or, equivalently, moving to an insufficiently buffered solution) gave rise to a second voltammetric feature. These results are rationalized with a conceptually simple model and finite element simulations. We demonstrate that the new voltammetric feature is caused by a large change in the pH at the electrode surface as the reaction proceeds. Importantly, we show that the occurrence of additional voltammetric features are general for proton-electron transfer reactions in insufficiently buffered solutions, and should not be confused with changes in the reaction mechanism

    Les gisements Cerny d'Hébécrevon "le village de l'HÎtel Torquet" et "La Couesnerie" (Manche)

    No full text
    Abstract The main contribution of this excavation lies in bringing to the fore a Middle Neolithic I (Cerny) occupation, permitting the observation of a new type of structure for that period : a kiln. Although the general state of conservation of the site unfortunately makes any attempt at functional or chronological interpretations impossible, the artefacts found during the excavation renew the regional ceramic corpus, and provide a first archaeological link between the regional sites of the V.S.G. and Cerny cultural groups. They thus confirm the data already gathered from the Paris Basin and Upper Normandy regarding the chronological relation between the V.S.G. and Cerny-Videlles periods.Résumé L'apport principal de cette fouille réside dans la mise en évidence d'une occupation du Néolithique Moyen I (Cerny) qui a permis l'observation d'un four, type de structure encore inédit pour cette période. L'état de conservation général du gisement interdit hélas toute interprétation d'ordre fonctionnel ou ethnologique. Le mobilier recueilli renouvelle cependant le corpus céramique régional et confirme les données acquises dans le Bassin parisien et en Haute-Normandie sur la filiation V.S.G./Cerny-Videlles.GhesquiÚre Emmanuel, Marcigny Cyril, Lepaumier Hubert, Dietsch-Sellami Marie-France, Renault Valérie, Savary Xavier. Les gisements Cerny d'Hébécrevon "le village de l'HÎtel Torquet" et "La Couesnerie" (Manche). In: Bulletin de la Société préhistorique française, tome 96, n°4, 1999. pp. 529-546

    Partial structural characterization and antioxidant activity of a phenolic–xylan from Castanea sativa hardwood

    No full text
    International audience4-O-Methylglucuronoxylans (MGX) were isolated from chestnut wood sawdust using two different procedures: chlorite delignification followed by the classical alkaline extraction step, and an unusual green chemistry process of delignification using phthalocyanine/H2O2 followed by a simple extraction with hot water. Antioxidant properties of both MGX were evaluated against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) by electronic spin resonance (ESR). IC50 of water-extracted MGX was found to be less than 225 ÎŒg mL−1, in contrast with alkali-extracted MGX for which no radical scavenging was observed. Characterization of extracts by colorimetric assay, GC, LC–MS and NMR spectroscopy provided some clues to understanding structure–function relationships of MGX in connection with their antioxidant activity
    corecore