563 research outputs found

    A red tide of Alexandrium fundyense in the Gulf of Maine

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 174-184, doi:10.1016/j.dsr2.2013.05.011.In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.The R/V Tioga sampling effort was facilitated by event response funding from the National Oceanic Atmospheric Administration (NOAA), National Ocean Service, Center for Sponsored Coastal Ocean Research, through NOAA Cooperative Agreement NA17RJ1223. Additional support for follow-up analysis and synthesis was provided by NOAA grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE- 0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201

    Neonatal brain tissue classification with morphological adaptation and unified segmentation

    Get PDF
    Measuring the distribution of brain tissue types (tissue classification) in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation), which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM) software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF), hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation) acquired at 30 weeks’ corrected gestational age (n= 5), coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5) and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5). The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR) group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation) acquired shortly after birth (n= 12), preterm infants acquired at term-equivalent age (n= 12), and healthy term-born infants (born ≥38 weeks’ gestation) acquired within the first nine days of life (n= 12). For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for the cortical gray matter for coronal images acquired at 30 weeks. This demonstrates that MANTiS’ performance is competitive with existing techniques. For the WUNDeR dataset, mean Dice scores comparing MANTiS with manually edited segmentations demonstrated good agreement, where all scores were above 0.75, except for the hippocampus and amygdala. The results show that MANTiS is able to segment neonatal brain tissues well, even in images that have brain abnormalities common in preterm infants. MANTiS is available for download as an SPM toolbox from http://developmentalimagingmcri.github.io/mantis

    Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness”

    Get PDF
    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness

    ACC/AHA 2007 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction) Developed in Collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine

    Get PDF
    "The ACC/AHA Task Force on Practice Guidelines was formed to make recommendations regarding the diagnosis and treatment of patients with known or suspected cardiovascular disease (CVD). Coronary artery disease (CAD) is the leading cause of death in the United States. Unstable angina (UA) and the closely related condition of non–ST-segment elevation myocardial infarction (NSTEMI) are very common manifestations of this disease. The committee members reviewed and compiled published reports through a series of computerized literature searches of the English-language literature since 2002 and a final manual search of selected articles. Details of the specific searches conducted for particular sections are provided when appropriate. Detailed evidence tables were developed whenever necessary with the specific criteria outlined in the individual sections. The recommendations made were based primarily on these published data. The weight of the evidence was ranked highest (A) to lowest (C). The final recommendations for indications for a diagnostic procedure, a particular therapy, or an intervention in patients with UA/NSTEMI summarize both clinical evidence and expert opinion.

    The Prevalence and Influence of the Combination of Humor and Violence in Super Bowl Commercials

    Get PDF
    The growing concern over violence in the media has led to vast amounts of research examining the effects of violent media on viewers. An important subset of this research looks at how humor affects this relationship. While research has considered this subset in television programming, almost no research has explored this in the context of advertising. This paper builds on the little research that exists by examining the effects of combining humor and violence, as well as the theoretical approaches that underlie these effects. A content analysis is conducted to identify the prevalence of violence, humor, and the combination of these elements in a longitudinal sample of Super Bowl commercials (2005, 2007, and 2009). Further, we investigate the relationship between the joint occurrence of humor and violence in ads and ad popularity. We conclude that violent acts are rampant in these commercials and that many acts are camouflaged by the simultaneous presence of humor, especially in the most popular ads

    Associations between circulating interferon and kynurenine/tryptophan pathway metabolites: support for a novel potential mechanism for cognitive dysfunction in SLE

    Get PDF
    OBJECTIVE: Quinolinic acid (QA), a kynurenine (KYN)/tryptophan (TRP) pathway metabolite, is an N-methyl-D-aspartate receptor agonist that can produce excitotoxic neuron damage. Type I and II interferons (IFNs) stimulate the KYN/TRP pathway, producing elevated QA/kynurenic acid (KA), a potential neurotoxic imbalance that may contribute to SLE-mediated cognitive dysfunction. We determined whether peripheral blood interferon-stimulated gene (ISG) expression associates with elevated serum KYN:TRP and QA:KA ratios in SLE. METHODS: ISG expression (whole-blood RNA sequencing) and serum metabolite ratios (high-performance liquid chromatography) were measured in 72 subjects with SLE and 73 healthy controls (HCs). ISG were identified from published gene sets and individual IFN scores were derived to analyse associations with metabolite ratios, clinical parameters and neuropsychological assessments. SLE analyses were grouped by level of ISG expression ('IFN high', 'IFN low' and 'IFN similar to HC') and level of monocyte-associated gene expression (using CIBERSORTx). RESULTS: Serum KYN:TRP and QA:KA ratios were higher in SLE than in HC (p<0.01). 933 genes were differentially expressed ≥2-fold in SLE versus HC (p<0.05). 70 of the top 100 most highly variant genes were ISG. Approximately half of overexpressed genes that correlated with KYN:TRP and QA:KA ratios (p<0.05) were ISG. In 36 IFN-high subjects with SLE, IFN scores correlated with KYN:TRP ratios (p<0.01), but not with QA:KA ratios. Of these 36 subjects, 23 had high monocyte-associated gene expression, and in this subgroup, the IFN scores correlated with both KY:NTRP and QA:KA ratios (p<0.05). CONCLUSIONS: High ISG expression correlated with elevated KYN:TRP ratios in subjects with SLE, suggesting IFN-mediated KYN/TRP pathway activation, and with QA:KA ratios in a subset with high monocyte-associated gene expression, suggesting that KYN/TRP pathway activation may be particularly important in monocytes. These results need validation, which may aid in determining which patient subset may benefit from therapeutics directed at the IFN or KYN/TRP pathways to ameliorate a potentially neurotoxic QA/KA imbalance

    Harmful algal blooms and eutrophication : examining linkages from selected coastal regions of the United States

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH)
    • …
    corecore