102 research outputs found
Complementarity of ultrasound and fluorescence imaging in an orthotopic mouse model of pancreatic cancer
<p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is a devastating disease characterized by dismal 5-year survival rates and limited treatment options. In an effort to provide useful models for preclinical evaluation of new experimental therapeutics, we and others have developed orthotopic mouse models of pancreatic cancer. The utility of these models for pre-clinical testing is dependent upon quantitative, noninvasive methods for monitoring <it>in vivo </it>tumor progression in real time. Toward this goal, we performed whole-body fluorescence imaging and ultrasound imaging to evaluate and to compare these noninvasive imaging modalities for assessing tumor burden and tumor progression in an orthotopic mouse model of pancreatic cancer.</p> <p>Methods</p> <p>The human pancreatic cancer cell line XPA-1, engineered for stable, high-level expression of red fluorescent protein (RFP), was implanted into the pancreas of nude mice using orthotopic implantation. The tumors were allowed to grow over a period of one to several weeks during which time the mice were imaged using both fluorescence imaging and ultrasound imaging to measure tumor burden and to monitor tumor growth.</p> <p>Results</p> <p>Whole-body fluorescence imaging and ultrasound imaging both allowed for the visualization and measurement of orthotopic pancreatic tumor implants <it>in vivo</it>. The imaging sessions were well-tolerated by the mice and yielded data which correlated well in the quantitative assessment of tumor burden. Whole-body fluorescence and two-dimensional ultrasound imaging showed a strong correlation for measurement of tumor size over a range of tumor sizes (R<sup>2 </sup>= 0.6627, P = 0.003 for an exposure time of 67 msec and R<sup>2 </sup>= 0.6553, P = 0.003 for an exposure time of 120 msec).</p> <p>Conclusion</p> <p>Our findings suggest a complementary role for fluorescence imaging and ultrasound imaging in assessing tumor burden and tumor progression in orthotopic mouse models of human cancer.</p
Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model
The use of fluorescent proteins to label tumors is revolutionizing cancer research, enabling imaging of both primary and metastatic lesions, which is important for diagnosis, staging, and therapy. This report describes the use of fluorescence laparoscopy to image green fluorescent protein (GFP)-expressing tumors in an orthotopic mouse model of human pancreatic cancer.
The orthotopic mouse model of human pancreatic cancer was established by injecting GFP-expressing MiaPaCa-2 human pancreatic cancer cells into the pancreas of 6-week-old female athymic mice. On postoperative day 14, diagnostic laparoscopy using both white and fluorescent light was performed. A standard laparoscopic system was modified by placing a 480-nm short-pass excitation filter between the light cable and the laparoscope in addition to using a 2-mm-thick emission filter. A camera was used that allowed variable exposure time and gain setting. For mouse laparoscopy, a 3-mm 0° laparoscope was used. The mouse’s abdomen was gently insufflated to 2 mm Hg via a 22-gauge angiocatheter. After laparoscopy, the animals were sacrificed, and the tumors were collected and processed for histologic review. The experiments were performed in triplicate.
Fluorescence laparoscopy enabled rapid imaging of the brightly fluorescent tumor in the pancreatic body. Use of the proper filters enabled simultaneous visualization of the tumor and the surrounding structures with minimal autofluorescence. Fluorescence laparoscopy thus allowed exact localization of the tumor, eliminating the need to switch back and forth between white and fluorescence lighting, under which the background usually is so darkened that it is difficult to maintain spatial orientation.
The use of fluorescence laparoscopy permits the facile, real-time imaging and localization of tumors labeled with fluorescent proteins. The results described in this report should have important clinical potential
Constitutively Activated NLRP3 Inflammasome Causes Inflammation and Abnormal Skeletal Development in Mice
The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue “spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling
Fully Resolved assembly of Cryptosporidium Parvum
BACKGROUND: Cryptosporidium parvum is an apicomplexan parasite commonly found across many host species with a global infection prevalence in human populations of 7.6%. Understanding its diversity and genomic makeup can help in fighting established infections and prohibiting further transmission. The basis of every genomic study is a high-quality reference genome that has continuity and completeness, thus enabling comprehensive comparative studies.
FINDINGS: Here, we provide a highly accurate and complete reference genome of Cryptosporidium parvum. The assembly is based on Oxford Nanopore reads and was improved using Illumina reads for error correction. We also outline how to evaluate and choose from different assembly methods based on 2 main approaches that can be applied to other Cryptosporidium species. The assembly encompasses 8 chromosomes and includes 13 telomeres that were resolved. Overall, the assembly shows a high completion rate with 98.4% single-copy BUSCO genes.
CONCLUSIONS: This high-quality reference genome of a zoonotic IIaA17G2R1 C. parvum subtype isolate provides the basis for subsequent comparative genomic studies across the Cryptosporidium clade. This will enable improved understanding of diversity, functional, and association studies
Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG registries
Purpose Diffuse intrinsic pontine glioma (DIPG) is a brainstem malignancy with a median survival of < 1 year. The International and European Society for Pediatric Oncology DIPG Registries collaborated to compare clinical, radiologic, and histomolecular characteristics between short-term survivors (STSs) and long-term survivors (LTSs). Materials and Methods Data abstracted from registry databases included patients from North America, Australia, Germany, Austria, Switzerland, the Netherlands, Italy, France, the United Kingdom, and Croatia. Results Among 1,130 pediatric and young adults with radiographically confirmed DIPG, 122 (11%) were excluded. Of the 1,008 remaining patients, 101 (10%) were LTSs (survival ≥ 2 years). Median survival time was 11 months (interquartile range, 7.5 to 16 months), and 1-, 2-, 3-, 4-, and 5-year survival rates were 42.3% (95% CI, 38.1% to 44.1%), 9.6% (95% CI, 7.8% to 11.3%), 4.3% (95% CI, 3.2% to 5.8%), 3.2% (95% CI, 2.4% to 4.6%), and 2.2% (95% CI, 1.4% to 3.4%), respectively. LTSs, compared with STSs, more commonly presented at age < 3 or > 10 years (11% v 3% and 33% v 23%, respectively; P < .001) and with longer symptom duration ( P < .001). STSs, compared with LTSs, more commonly presented with cranial nerve palsy (83% v 73%, respectively; P = .008), ring enhancement (38% v 23%, respectively; P = .007), necrosis (42% v 26%, respectively; P = .009), and extrapontine extension (92% v 86%, respectively; P = .04). LTSs more commonly received systemic therapy at diagnosis (88% v 75% for STSs; P = .005). Biopsies and autopsies were performed in 299 patients (30%) and 77 patients (10%), respectively; 181 tumors (48%) were molecularly characterized. LTSs were more likely to harbor a HIST1H3B mutation (odds ratio, 1.28; 95% CI, 1.1 to 1.5; P = .002). Conclusion We report clinical, radiologic, and molecular factors that correlate with survival in children and young adults with DIPG, which are important for risk stratification in future clinical trials
Instability, investment, disasters, and demography: natural disasters and fertility in Italy (1820–1962) and Japan (1671–1965)
This article examines whether natural disasters affect fertility—a topic little explored but of policy importance given relevance to policies regarding disaster insurance, foreign aid, and the environment. The identification strategy uses historic regional data to exploit natural variation within each of two countries: one European country—Italy (1820–1962), and one Asian country—Japan (1671–1965). The choice of study settings allows consideration of Jones’ (The European miracle, Cambridge University Press, Cambridge, 1981) theory that preindustrial differences in income and population between Asia and Europe resulted from the fertility response to different environmental risk profiles. According to the results, short-run instability, particularly that arising from the natural environment, appears to be associated with a decrease in fertility—thereby suggesting that environmental shocks and economic volatility are associated with a decrease in investment in the population size of future generations. The results also show that, contrary to Jones’ (The European miracle, Cambridge University Press, Cambridge, 1981) theory, differences in fertility between Italy and Japan cannot be explained away by disaster proneness alone. Research on the effects of natural disasters may enable social scientists and environmentalists alike to better predict the potential effects of the increase in natural disasters that may result from global climate change
Increased Systemic Th17 Cytokines Are Associated with Diastolic Dysfunction in Children and Adolescents with Diabetic Ketoacidosis
Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with T1DM, but its pathogenesis is not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in 17 children with T1DM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured cytokines/chemokines were elevated at 6–12 hours into treatment of DKA compared to values after DKA resolution. Eight patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute DKA
A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor
© 2019 Elsevier Inc. Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death. Sin-Chan et al. uncover a C19MC-LIN28A-MYCN super-enhancer-dependent oncogenic circuit in embryonal tumors with multilayered rosettes (ETMRs). The circuit entraps an early neural lineage network to sustain embryonic epigenetic programming and is vulnerable to bromodomain inhibition, which promotes ETMR cell death
Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss
Hearing loss is one of the top contributors to years lived with disability and is a risk factor for dementia. Molecular evidence on the cellular origins of hearing loss in humans is growing. Here, we performed a genome-wide association meta-analysis of clinically diagnosed and self-reported hearing impairment on 723,266 individuals and identified 48 significant loci, 10 of which are novel. A large proportion of associations comprised missense variants, half of which lie within known familial hearing loss loci. We used single-cell RNA-sequencing data from mouse cochlea and brain and mapped common-variant genomic results to spindle, root, and basal cells from the stria vascularis, a structure in the cochlea necessary for normal hearing. Our findings indicate the importance of the stria vascularis in the mechanism of hearing impairment, providing future paths for developing targets for therapeutic intervention in hearing loss
- …