1,820 research outputs found

    From bound states to resonances: analytic continuation of the wave function

    Get PDF
    Single-particle resonance parameters and wave functions in spherical and deformed nuclei are determined through analytic continuation in the potential strength. In this method, the analyticity of the eigenvalues and eigenfunctions of the Schroedinger equation with respect to the coupling strength is exploited to analytically continue the bound-state solutions into the positive-energy region by means of Pade' approximants of the second kind. The method is here applied to single-particle wave functions of the 154Sm^{154}Sm and 131Eu^{131}Eu nuclei. A comparison of the results with the direct solution of the Schroedinger equation shows that the method can be confidently applied also in coupled-channel situations requiring high numerical accuracy.Comment: 13 pages, 3 figure

    Self-Consistent Velocity Dependent Effective Interactions

    Get PDF
    The theory of self-consistent effective interactions in nuclei is extended for a system with a velocity dependent mean potential. By means of the field coupling method, we present a general prescription to derive effective interactions which are consistent with the mean potential. For a deformed system with the conventional pairing field, the velocity dependent effective interactions are derived as the multipole pairing interactions in doubly-stretched coordinates. They are applied to the microscopic analysis of the giant dipole resonances (GDR's) of 148,154Sm{}^{148,154}Sm, the first excited 2+2^+ states of Sn isotopes and the first excited 33^- states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting and structure of GDR peaks, in restoring the energy weighted sum rule, and in reducing the values of B(Eλ)B(E\lambda).Comment: 35 pages, RevTeX, 7 figures (available upon request), to appear in Phys.Rev.

    Two-Step Model of Fusion for Synthesis of Superheavy Elements

    Get PDF
    A new model is proposed for fusion mechanisms of massive nuclear systems where so-called fusion hindrance exists. The model describes two-body collision processes in an approaching phase and shape evolutions of an amalgamated system into the compound nucleus formation. It is applied to 48^{48}Ca-induced reactions and is found to reproduce the experimental fusion cross sections extremely well, without any free parameter. Combined with the statistical decay theory, residue cross sections for the superheavy elements can be readily calculated. Examples are given.Comment: 4 pages, 4 figure

    Low-lying quadrupole collective states of the light and medium Xenon isotopes

    Full text link
    Collective low lying levels of light and medium Xenon isotopes are deduced from the Generalized Bohr Hamiltonian (GBH). The microscopic seven functions entering into the GBH are built from a deformed mean field of the Woods-Saxon type. Theoretical spectra are found to be close to the ones of the experimental data taking into account that the calculations are completely microscopic, that is to say, without any fitting of parameters.Comment: 8 pages, 4 figures, 1 tabl

    GRB 080319B: A Naked-Eye Stellar Blast from the Distant Universe

    Get PDF
    Long duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of a massive star. Over the last forty years, our understanding of the GRB phenomenon has progressed dramatically; nevertheless, fortuitous circumstances occasionally arise that provide access to a regime not yet probed. GRB 080319B presented such an opportunity, with extraordinarily bright prompt optical emission that peaked at a visual magnitude of 5.3, making it briefly visible with the naked eye. It was captured in exquisite detail by wide-field telescopes, imaging the burst location from before the time of the explosion. The combination of these unique optical data with simultaneous gamma-ray observations provides powerful diagnostics of the detailed physics of this explosion within seconds of its formation. Here we show that the prompt optical and gamma-ray emissions from this event likely arise from different spectral components within the same physical region located at a large distance from the source, implying an extremely relativistic outflow. The chromatic behaviour of the broadband afterglow is consistent with viewing the GRB down the very narrow inner core of a two-component jet that is expanding into a wind-like environment consistent with the massive star origin of long GRBs. These circumstances can explain the extreme properties of this GRB.Comment: 43 pages, 18 figures, 3 tables, submitted to Nature May 11, 200

    Parallax in “Pi of the Sky” project

    Get PDF
    The main goal of the “Pi of the Sky” project is search for optical transients (OTs) of astrophysical origin, in particular those related to gamma-ray bursts (GRBs). Since March 2011 the project has two running observatories: one in northern Chile and the other one insouthern Spain. This allows for regular observations of a common sky fields, visible from both observatories which are scheduled usually 1–2 h per night. In such a case, the on-line flash recognition algorithm, looking for optical transients, can use parallax information toassure that events observed from both sites have parallax angle smaller than the error of astrometry. On the other hand, the remaining OT candidates can be verified against a hypothesis of being near-Earth objects. This paper presents algorithm using parallax information for identification of near-Earth objects, which might be satellites, or space debris elements. Preliminary results of the algorithm are also presented

    Search for single vector-like quarks in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for hypothetical vector-like quarks in ppbar collisions at sqrt(s) = 1.96 TeV. The data were collected by the D0 detector at the Fermilab Tevatron Collider and correspond to an integrated luminosity of 5.4 fb^(-1). We select events with a final state composed of a W or Z boson and a jet consistent with a heavy object decay. We observe no significant excess in comparison to the background prediction and set limits on production cross sections for vector-like quarks decaying to W+jet and Z+jet. These are the most stringent mass limits for electroweak single vector-like quark production at hadron colliders.Comment: submitted to Phys. Rev. Let

    Measurements of differential cross sections of Z/gamma*+jets+X events in proton anti-proton collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present cross section measurements for Z/gamma*+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the D0 detector at the Fermilab Tevatron proton anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb-1. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements.Comment: Published in PLB. 11 pages, 3 figure
    corecore