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We present a search for hypothetical vector-like quarks in pp collisions at /s = 1.96 TeV. The
data were collected by the DO detector at the Fermilab Tevatron Collider and correspond to an
integrated luminosity of 5.4 fb™'. We select events with a final state composed of a W or Z boson
and a jet consistent with a heavy object decay. We observe no significant excess in comparison to
the background prediction and set limits on production cross sections for vector-like quarks decaying
to W+jet and Z+jet. These are the most stringent limits to date for electroweak single vector-like
quark production at hadron colliders.

PACS numbers: 12.60.-i, 13.85.Rm, 14.65.Jk

The standard model (SM) of particle physics, despite
its many successes in accurately describing interactions
below the TeV scale, is known to suffer shortcomings
at higher energy scales. A wide range of theories have
therefore been proposed to describe phenomena at the
TeV scale and beyond, among them warped extra di-
mensions [1], universal extra dimensions |2], and little
Higgs [3] models. There exist particular realizations
of each of these theories that predict the existence of

*with visitors from ®Augustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, °SLAC, Menlo Park,
CA, USA, “ICREA /IFAE, Barcelona, Spain, ¢Centro de Investiga-
cion en Computacion - IPN, Mexico City, Mexico, fECFM, Uni-
versidad Autonoma de Sinaloa, Culiacan, Mexico, and 9 Universitat
Bern, Bern, Switzerland.

vector-like quarks [4-6], massive particles which share
many characteristics with SM quarks. The notable ex-
ception is that the right-handed and left-handed compo-
nents of vector-like quarks transform in the same way
under SU(3) x SU(2) x U(1), hence their name.

Previous searches for strong pair production of vector-
like quarks at the Fermilab Tevatron Collider have ex-
cluded masses of up to 338 GeV at the 95% C.L. [1].
However, recent years have seen the development of the-
oretical scenarios in which corrections to SM quark cou-
plings arising from their mixing with vector-like quarks
cancel out, permitting the two types of quarks to mix
to a degree unconstrained by precision electroweak mea-
surements and b-factory results. Such large mixing with
no introduction of anomalous couplings allows for single
production of vector-like quarks at hadron colliders via
the weak interaction |4]. Diagrams for single electroweak



FIG. 1: s-channel (a) and t-channel (b) electroweak produc-
tion of a vector-like quark ) at the Tevatron.

vector-like quark production are shown in Figure [1I
Generally, electroweak couplings to SM quarks are set
by the parameter rqq:

v
RqQ = m_Qﬁqu (1)

where v is the vacuum expectation value of the SM Higgs
field, mq is the mass of the vector-like quark, and K4
is the coupling strength. Provided this coupling is not
too small, a search for singly produced vector-like quarks
can benefit from the lower kinematic threshold compared
to pair production and stands to improve the mass limit
considerably.

In this Letter, we present a search for singly produced
vector-like quarks using data corresponding to an inte-
grated luminosity of 5.4 fb~! collected by the DO detec-
tor [8] at the Fermilab Tevatron Collider. We consider a
model [4] in which there are two doublets of vector-like
quarks that couple to the first generation of SM quarks.
Vector-like quark final states are characterized by either a
W or Z boson and at least two jets, one of which results
from the decay of the vector-like quark, while another
is produced in association with the vector-like quark at
the primary vertex. We select events in which the vector
boson decays to either electron(s) or muon(s).

The DO detector is described in detail in [§]. The region
of the DO detector closest to the interaction point con-
tains a central-tracking system consisting of a silicon mi-
crostrip tracker (SMT) and a central fiber tracker (CFT),
both of which are located within a 2 T superconducting
solenoidal magnet. Hits in these two detectors are used to
reconstruct tracks from charged particles. Surrounding
the two tracking subdetectors are liquid-argon and ura-
nium calorimeters, both electromagnetic and hadronic,
which have a central section (CC) covering pseudorapidi-
ties 9] |n| < 1.1, and two end calorimeters (EC) that
extend coverage to |n| ~ 4.2, with all three housed in
separate cryostats. Electrons are identified as isolated
energy clusters in the electromagnetic calorimeter, with
a shape consistent with that of an electron, matched to
a track in the inner detector. Jets are reconstructed in
the calorimeters using the iterative midpoint cone algo-

rithm [10] with a cone of radius R = 0.5 in 1 — ¢ space.
An outer muon system, providing coverage for |n| < 2,
consists of a layer of tracking detectors and scintillation
trigger counters in front of 1.8 T toroids, followed by two
similar layers after the toroids. Muons are identified via
a combination of reconstructed tracks in both the outer
muon system and the central tracking system, and are re-
quired to be isolated from both tracker and calorimeter
activity.

Vector-like quark signals and background processes
which include electrons or muons from W or Z boson
decays are modeled using Monte Carlo (MC) simula-
tion. Signal samples are generated using MADGRAPH [11],
with CTEQ6L1 [12] parton distribution functions, LO
cross sections from [4] and vector-like quark resonance
widths calculated with BRIDGE [13]. Subsequent parton
shower evolution is generated with PYTHIA [14]. We set
Rup = 1, kyy = V2 and Fay = Rap = 0, such that down-
type vector-like quarks decay exclusively to Wq and up-
type quarks decay exclusively to Zq. This choice, while
affecting the production rates and therefore the excluded
vector-like quark masses, does not affect the cross sec-
tion limits themselves. We generate up- and down-type
vector-like quark signals with masses between 280 GeV
and 700 GeV. Backgrounds from tf, W — fv+jets, and
Z — l+jets production are modeled using ALPGEN [15],
also interfaced to PYTHIA. For these events, we use a
matching procedure to avoid double counting partons
produced by ALPGEN and those added by the shower-
ing in PYTHIA [16]. Diboson samples are generated with
PYTHIA, and single top quark production is modeled us-
ing the coMPHEP [17] generator. All MC samples are
passed through a GEANT [18] simulation of the D0 detec-
tor and are overlaid with data events from randomly cho-
sen beam crossings to simulate the effect of multiple pp
interactions and detector noise. MC events are then re-
constructed using the same software that is used for data
reconstruction. The W+jets and Z+jets samples are
normalized to the leading-log cross section reported by
ALPGEN times a k-factor calculated by MCFM |[19]. The
tt samples are normalized to a next-to-next-to-leading or-
der (NNLO) cross section for m; = 172.5 GeV [20], and
the diboson samples (WW, WZ and ZZ) to the NLO
cross section predicted by MCFM [21]. All simulated
events are corrected for differences in trigger and recon-
struction efficiencies between data and simulation.

We conduct the search in two channels, correspond-
ing to vector-like quark decays to (W — fv)+jet and
to (Z — 00)+jet. In the W+jets channel, we initially
select events which have passed a single lepton trigger
and contain exactly one electron (|n| < 1.1) or muon
(In| < 2.0) with transverse momentum pr > 20 GeV, at
least two jets with pr > 20 GeV and |n| < 2.5, and miss-
ing transverse energy K, corrected for the momentum
of any muons in the event, greater than 15 GeV. We also
require 2M} + B > 80 GeV, where M}V is the trans-



verse mass of the lepton- system, in order to suppress
the multijet background. In the Z+jets channel, we ini-
tially select events with exactly two electrons or muons
in addition to at least two jets, all with same pp thresh-
olds as used in the W+jets channel. Events are selected
by a mixture of single lepton, dilepton and lepton plus
jets triggers. Due to the low rate of background without
real Z bosons, electrons are also accepted in the endcap
electromagnetic calorimeters (1.5 < || < 2.5). The two
leptons are required to have an invariant mass between
70 and 110 GeV, i.e. consistent with that of a Z boson.
Additionally, we require K, < 50 GeV, as this channel
contains only instrumental sources of missing transverse
energy.

The largest physics background to the single lepton
channel is W(— fv)+jets production, with smaller con-
tributions from Z+jets, tf, diboson, and single top quark
processes. The main instrumental background arises
from multijet events in which one of the jets is misiden-
tified as a high-pr isolated lepton in the detector. We
model this background using data events which fail the
calorimeter shower shape requirements for the electron
or the isolation requirements for the muon, but pass all
other selection criteria. In the single electron channel,
we estimate the relative fraction of real electrons from
W boson decays and misidentified electrons from jets by
determining the efficiencies for each type of event to pass
a tighter selection. These efficiencies are calculated in
Z — ee data for real electrons and in a Ky < 20 GeV
sample for misidentified electrons. In the single muon
channel, we scale the events failing the muon isolation
requirement to match the number of events obtained af-
ter subtracting the expected number of real W bosons
satisfying the event selection from the number of events
observed in data.

In the dilepton channel, (Z — £¢)+jets events domi-
nate the SM background. In order to correct the Monte
Carlo for the small trigger inefficiency in the data, we
apply a global normalization determined using a pure
Z — Ul sample. The ratio between the data yield in
this sample and the predicted yield from the inclusive
Z boson cross section multiplied by the branching ra-
tio is associated with the overall trigger efficiency, and
the Monte Carlo distributions are scaled by this ratio.
The multijet background is modeled using data events in
which both leptons fail quality criteria (for electrons) or
isolation criteria (for muons), and is normalized to the
difference between data and MC in the dilepton mass
window between 40 and 70 GeV.

The signal contains events with a W or Z boson and
jets, all with high transverse momentum, as the de-
cay products of a high mass resonance. We apply sev-
eral kinematic selection criteria to select events of this
type and to minimize the contributions from SM back-
ground processes. In the single lepton channel, we re-
quire lepton pp > 50 GeV, highest jet pr > 100 GeV,

TABLE I: Predicted number of background events including
total uncertainties and observed number of data events after
final selection.

Process Single lepton sample  Dilepton sample
Multijet 47.7+£4.7 < 0.1

Z+jets 399+74 262 +45

W +jets 901 + 159 0.34+0.2
Top 193 £24 0.57 +0.06
Diboson 38.6+3.8 8.3+£0.7
Background sum 1220 + 161 271 +45
Data 1175 285

B > 40(50) GeV for the muon (electron) channel, and
that the separation in azimuthal angle ¢ between the lep-
ton and the y be less than 2. As the signal contains
real W bosons, we additionally require Mj}" < 150 GeV.
Finally, we exploit the relationship between the lepton
charge and the 7 of the jet with the second-highest pr in
the signal topology. This jet, which we assign to the SM
quark produced in association with the vector-like quark,
is emitted, in general, into one of the forward regions of
the detector, and its direction is strongly correlated with
the charge of the produced vector-like quark, and thus
also with the charge of the lepton from its decay. We
therefore require Q¢ x 1, > 0, where Q) is the lepton
charge and 7, is the 1 of the jet with the second-highest
pr in the event. This selection is efficient for the signal
(= 85%), while reducing the SM background by roughly
a factor of two.

In the dilepton channel, we similarly select events with
properties characteristic of a heavy resonance decay to
a Z boson and a jet. We require the py of the dilepton
system to be greater than 100 GeV, the spatial separation
of the two leptons in 1 — ¢ space (AR) to be less than
2.0, and the leading jet pr to be greater than 100 GeV.

Table [[l displays the observed number of data events,
along with estimated background yields, after the final
event selection in the single lepton and dilepton chan-
nels. Fig. [2] shows the reconstructed vector-like quark
transverse mass, defined as

(Mf?)? = (\/ P, + M3, +ij1)2 - (Prw +I7Tj1)27 (2)

for the single lepton channel, where My, = 80.3 GeV is
the mass of the W boson and pr,, refers to the transverse
momentum of the leading jet in the event. Also shown in
Fig.[2is the vector-like quark mass in the dilepton chan-
nel, reconstructed as the invariant mass of the dilepton
+ leading jet system.

Major sources of systematic uncertainty common to
both analyses include modeling of W/Z+jets back-
grounds (15%); cross sections for ¢t (10%), diboson (6%),
and W /Z+jets (6%) production; and jet energy scale
and resolution (1%-5%). Major systematic uncertain-
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FIG. 2: (a) Vector-like quark transverse mass and (b) vector-
like quark mass for the single lepton and dilepton channels,
respectively. Distributions for signal processes Qp — Wq
and Qu — Zq are normalized to the integrated luminosity of
the data and include detector acceptance and reconstruction
efficiencies. These assume &up = 1 and Ruu = V2.

ties unique to the single lepton analysis include inte-
grated luminosity (6.1%) [22], lepton identification effi-
ciencies (3%), high-pr muon modeling, and trigger mod-
eling (1%). A systematic uncertainty of 5% is assigned to
the global background normalization applied to the dilep-
ton MC samples. Systematic uncertainties on multijet
normalization are 6.5%-100%, depending on the chan-
nel. These do not have a large effect on the overall back-
ground prediction, as the estimated multijet background
is small after the final selection.

We observe no significant excess of data over the back-
ground prediction in either channel, therefore we set lim-
its on vector-like quark production cross sections. We
employ a modified frequentist approach using the DO like-
lihood fitter ﬂﬁ] that incorporates a log-likelihood ratio
(LLR) test statistic [24]. We calculate confidence levels
for the signal plus background (C L) and background-
only (CL,) hypotheses by integrating the (LLR) dis-
tributions obtained by generating pseudo-experiments
using Poisson statistics. Systematic uncertainties are
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FIG. 3: Excluded production cross section for a vector-like
quark @ decaying to Wgq as a function of mq, compared to
LO predictions of vector-like quark production with different
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FIG. 4: Excluded production cross section for a vector-like
quark @ decaying to Zq as a function of mg, compared to
LO predictions of vector-like quark production with different

RqQ-

treated as uncertainties on the expected number of sig-
nal and background events. The 95% confidence level
limit is defined as the signal cross section for which
CLs = CLg4p/CLy is 0.05. Using as discriminant vari-
ables the vector-like quark transverse mass for decays to
Wq and the vector-like quark mass for decays to Zq, we
obtain 95% C.L. limits on vector-like quark production
cross sections. These are shown in Figs. Bl and H, along
with leading order theoretical predictions for two differ-
ent scenarios. For the case of &yp = 1 and fuy = V2
with no coupling to the down quark, we exclude masses
below 693 GeV for a vector-like quark decaying exclu-
sively to Wq and masses below 551 GeV for a vector-like
quark decaying exclusively to Zq at the 95% C.L. For
an alternate scenario defined by &gy = 1 and fgp = V2
with no coupling to the up quark, the corresponding mass
limits are 403 GeV and 430 GeV, respectively.



In summary, we have presented a search for single
vector-like quark production at the Tevatron in the
W+jets and Z+jets final states. The observed data are
consistent with the background expectation and limits
on vector-like quark cross sections are derived. We ex-
clude vector-like quark masses below 693 GeV for decays
to Wq and masses below 551 GeV for decays to Zq at
95% C.L. assuming vector-like quark — SM quark mixing
parameters RKy,p = 1 and A,y = V2 along with 100%
branching ratios to the respective final states.
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