10 research outputs found

    Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy

    Get PDF
    Objective Assessment of SMN2 copy number in patients with spinal muscular atrophy (SMA) is essential to establish careful genotype-phenotype correlations and predict disease evolution. This issue is becoming crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatment, as this value is critical to stratify patients for clinical trials and to define those eligible to receive medication. Several technical pitfalls and interindividual variations may account for reported discrepancies in the estimation of SMN2 copy number and establishment of phenotype-genotype correlations. Methods We propose a management guide based on a sequence of specified actions once SMN2 copy number is determined for a given patient. Regardless of the method used to estimate the number of SMN2 copies, our approach focuses on the manifestations of the patient to recommend how to proceed in each case. Results We defined situations according to SMN2 copy number in a presymptomatic scenario of screening, in which we predict the possible evolution, and when a symptomatic patient is genetically confirmed. Unexpected discordant cases include patients having a single SMN2 copy but noncongenital disease forms, 2 SMN2 copies compatible with type II or III SMA, and 3 or 4 copies of the gene showing more severe disease than expected. Conclusions Our proposed guideline would help to systematically identify discordant SMA cases that warrant further genetic investigation. The SMN2 gene, as the main modifier of SMA phenotype, deserves a more in-depth study to provide more accurate genotype-phenotype correlations

    Deep Molecular Characterization of Milder Spinal Muscular Atrophy Patients Carrying the c.859G>C Variant in SMN2

    Get PDF
    Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype-phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype-phenotype correlations and improve prognostic outcomes

    Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases

    Get PDF
    Altres ajuts: Generalitat de Catalunya, Departament de Salut; Generalitat de Catalunya, Departament d'Empresa i Coneixement i CERCA Program; Ministerio de Ciencia e Innovación; Instituto Nacional de Bioinformática; ELIXIR Implementation Studies (CNAG-CRG); Centro de Investigaciones Biomédicas en Red de Enfermedades Raras; Centro de Excelencia Severo Ochoa; European Regional Development Fund (FEDER).Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%)

    Beyond copy number : A new, rapid, and versatile method for sequencing the entire SMN2 gene in SMA patients

    Get PDF
    Altres ajuts: Biogen (ESP-SMG-17-11256); Galicia AME; Fundación Daniel Bravo Andreu; SMA Europe; Fondo Europeo de Desarrollo Regional (FEDER).Spinal muscular atrophy (SMA) is caused by bi-allelic loss or pathogenic variants in the SMN1 gene. SMN2, the highly homologous copy of SMN1, is considered the major phenotypic modifier of the disease. Determination of SMN2 copy number is essential to establish robust genotype-phenotype correlations and predict disease evolution, to stratify patients for clinical trials, as well as to define those eligible for treatment. Discordant genotype-phenotype correlations are not uncommon in SMA, some of which are due to intragenic SMN2 variants that may influence the amount of complete SMN transcripts and, therefore, of full-length SMN protein. Detection of these variants is crucial to predict SMA phenotypes in the present scenario of therapeutic advances and with the perspective of SMA neonatal screening and early diagnosis to start treatments. Here, we present a novel, affordable, and versatile method for complete sequencing of the SMN2 gene based on long-range polymerase chain reaction and next-generation sequencing. The method was validated by analyzing samples from 53 SMA patients who lack SMN1, allowing to characterize paralogous, rare variants, and single-nucleotide polymorphisms of SMN2 as well as SMN2-SMN1 hybrid genes. The method identifies partial deletions and can be adapted to determine rare pathogenic variants in patients with at least one SMN1 copy

    Expanding the Clinical and Genetic Spectra of Primary Immunodeficiency-Related Disorders With Clinical Exome Sequencing : Expected and Unexpected Findings

    Get PDF
    We are deeply grateful to the affected individuals who participated in this study and their families. We thank the Barcelona PID Foundation for patient support and for funding MG-P. We acknowledge Celine Cavallo for English language support. Funding. This study was funded by Instituto de Salud Carlos III, grants PI14/00405 and PI17/00660, cofinanced by the European Regional Development Fund (ERDF).Primary immunodeficiencies (PIDs) refer to a clinically, immunologically, and genetically heterogeneous group of over 350 disorders affecting development or function of the immune system. The increasing use of next-generation sequencing (NGS) technology has greatly facilitated identification of genetic defects in PID patients in daily clinical practice. Several NGS approaches are available, from the unbiased whole exome sequencing (WES) to specific gene panels. Here, we report on a 3-year experience with clinical exome sequencing (CES) for genetic diagnosis of PIDs. We used the TruSight One sequencing panel, which includes 4,813 disease-associated genes, in 61 unrelated patients (pediatric and adults). The analysis was done in 2 steps: first, we focused on a virtual PID panel and then, we expanded the analysis to the remaining genes. A molecular diagnosis was achieved in 19 (31%) patients: 12 (20%) with mutations in genes included in the virtual PID panel and 7 (11%) with mutations in other genes. These latter cases provided interesting and somewhat unexpected findings that expand the clinical and genetic spectra of PID-related disorders, and are useful to consider in the differential diagnosis. We also discuss 5 patients (8%) with incomplete genotypes or variants of uncertain significance. Finally, we address the limitations of CES exemplified by 7 patients (11%) with negative results on CES who were later diagnosed by other approaches (more specific PID panels, WES, and comparative genomic hybridization array). In summary, the genetic diagnosis rate using CES was 31% (including a description of 12 novel mutations), which rose to 42% after including diagnoses achieved by later use of other techniques. The description of patients with mutations in genes not included in the PID classification illustrates the heterogeneity and complexity of PID-related disorders

    Evaluating the Genetics of Common Variable Immunodeficiency : Monogenetic Model and Beyond

    Get PDF
    Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15-24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy control

    A Common 16p11.2 Inversion Underlies the Joint Susceptibility to Asthma and Obesity

    No full text
    The prevalence of asthma and obesity is increasing worldwide, and obesity is a well-documented risk factor for asthma. The mechanisms underlying this association and parallel time trends remain largely unknown but genetic factors may be involved. Here, we report on a common similar to 0.45 Mb genomic inversion at 16p11.2 that can be accurately genotyped via SNP array data. We show that the inversion allele protects against the joint occurrence of asthma and obesity in five large independent studies (combined sample size of 317 cases and 543 controls drawn from a total of 5,809 samples; combined OR = 0.48, p = 5.5 3 x 10(-6)). Allele frequencies show remarkable worldwide population stratification, ranging from 10% in East Africa to 49% in Northern Europe, consistent with discordant and extreme genetic drifts or adaptive selections after human migration out of Africa. Inversion alleles strongly correlate with expression levels of neighboring genes, especially TUFM (p = 3.0 x 10(-40)) that encodes a mitochondrial protein regulator of energy balance and inhibitor of type 1 interferon, and other candidates for asthma (IL27) and obesity (APOB48R and SH2B1). Therefore, by affecting gene expression, the similar to 0.45 Mb 16p11.2 inversion provides a genetic basis for the joint susceptibility to asthma and obesity, with a population attributable risk of 39.7%. Differential mitochondrial function and basal energy balance of inversion alleles might also underlie the potential selection signature that led to their uneven distribution in world populations

    Schuurs-Hoeijmakers syndrome (PACS1 neurodevelopmental disorder): seven novel patients and a review

    Get PDF
    Schuurs-Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopmental disorder is a rare disorder characterized by intellectual disability, abnormal craniofacial features and congenital malformations. SHMS is an autosomal dominant hereditary disease caused by pathogenic variants in the PACS1 gene. PACS1 is a trans-Golgi-membrane traffic regulator that directs protein cargo and several viral envelope proteins. It is upregulated during human embryonic brain development and has low expression after birth. So far, only 54 patients with SHMS have been reported. In this work, we report on seven new identified SHMS individuals with the classical c.607C > T: p.Arg206Trp PACS1 pathogenic variant and review clinical and molecular aspects of all the patients reported in the literature, providing a summary of clinical findings grouped as very frequent (≥75% of patients), frequent (50-74%), infrequent (26-49%) and rare (less than ≤25%)

    De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features

    No full text
    International audiencePigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko’s lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 ( TFE3 ) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions. Materials and methods Subsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM. Results We describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko’s lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants. Conclusion This series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development

    Loss-of-function variants in SRRM2 cause a neurodevelopmental disorder

    Get PDF
    PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease
    corecore