316 research outputs found

    Interactions of adsorbed CO2_2 on water ice at low temperatures

    Get PDF
    We present a computational study into the adsorption properties of CO2_2 on amorphous and crystalline water surfaces under astrophysically relevant conditions. Water and carbon dioxide are two of the most dominant species in the icy mantles of interstellar dust grains and a thorough understanding of their solid phase interactions at low temperatures is crucial for understanding the structural evolution of the ices due to thermal segregation. In this paper, a new H2_2O-CO2_2 interaction potential is proposed and used to model the ballistic deposition of CO2_2 layers on water ice surfaces, and to study the individual binding sites at low coverages. Contrary to recent experimental results, we do not observe CO2_2 island formation on any type of water substrate. Additionally, density functional theory calculations are performed to assess the importance of induced electrostatic interactions.Comment: Accepted for publication in Physical Chemistry Chemical Physic

    Relevance of the H_2 + O reaction pathway for the surface formation of interstellar water. Combined experimental and modeling study

    Get PDF
    The formation of interstellar water is commonly accepted to occur on the surfaces of icy dust grains in dark molecular clouds at low temperatures (10–20 K), involving hydrogenation reactions of oxygen allotropes. As a result of the large abundances of molecular hydrogen and atomic oxygen in these regions, the reaction H_2 + O has been proposed to contribute significantly to the formation of water as well. However, gas-phase experiments and calculations, as well as solid-phase experimental work contradict this hypothesis. Here, we use precisely executed temperature-programmed desorption (TPD) experiments in an ultra-high vacuum setup combined with kinetic Monte Carlo simulations to establish an upper limit of the water production starting from H_2 and O. These reactants were brought together in a matrix of CO_2 in a series of (control) experiments at different temperatures and with different isotopological compositions. The water detected with the quadrupole mass spectrometer upon TPD was found to originate mainly from contamination in the chamber itself. However, if water is produced in small quantities on the surface through H_2 + O, this can only be explained by a combined classical and tunneled reaction mechanism. An absolutely conservative upper limit for the reaction rate was derived with a microscopic kinetic Monte Carlo model that converts the upper limit into the highest possible reaction rate. Incorporating this rate into simulation runs for astrochemically relevant parameters shows that the upper limit to the contribution of the reaction H_2 + O in OH, and hence water formation, is 11% in dense interstellar clouds. Our combined experimental and theoretical results indicate, however, that this contribution is most likely much lower

    Resonant infrared irradiation of CO and CH3OH interstellar ices

    Full text link
    Solid-phase photo-processes involving icy dust grains greatly affect the chemical evolution of the interstellar medium by leading to the formation of complex organic molecules and by inducing photodesorption. So far, the focus of laboratory studies has been mainly on the impact of energetic ultraviolet (UV) photons on ices, but direct vibrational excitation by infrared (IR) photons is expected to influence the morphology and content of interstellar ices as well. However, little is still known about the mechanisms through which this excess vibrational energy is dissipated, and its implications on the structure and ice photochemistry. In this work, we present a systematic investigation of the behavior of interstellar relevant CO and CH3OH ice analogues upon resonant excitation of vibrational modes using tunable infrared radiation, leading to both the quantification of infrared-induced photodesorption and insights in the impact of vibrational energy dissipation on ice morphology. We utilize an ultrahigh vacuum setup at cryogenic temperatures to grow pure CO and CH3OH ices, as well as mixtures of the two. We expose the ices to intense, near-monochromatic mid-infrared free-electron-laser radiation to selectively excite the species. The dissipation of vibrational energy is observed to be highly dependent on the excited mode and the chemical environment of the ice. All amorphous ices undergo some degree of restructuring towards a more organized configuration upon on-resonance irradiation. Moreover, IR-induced photodesorption is observed to occur for both pure CO and CH3OH ices, with interstellar photodesorption efficiencies of the order of 10 molecules cm-2 s-1 (i.e., comparable to or higher than UV-induced counterparts). Indirect photodesorption of CO upon vibrational excitation of CH3OH in ice mixtures is also observed to occur, particularly in environments rich in methanol.Comment: Accepted for publication in A&A. 19 pages, 14 figures, 2 table

    Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species

    Get PDF
    Advanced telescopes, such as ALMA and the James Webb Space Telescope, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essential input information for gas‑grain models, such as binding energies of molecules to the surface, have been derived experimentally only for a handful of species, leaving hundreds of species with highly uncertain estimates. We present in this paper a systematic study of the effect of uncertainties in the binding energies on an astrochemical two-phase model of a dark molecular cloud, using the rate equations approach. A list of recommended binding energy values based on a literature search of published data is presented. Thousands of simulations of dark cloud models were run, and in each simulation a value for the binding energy of hundreds of species was randomly chosen from a normal distribution. Our results show that the binding energy of H2 is critical for the surface chemistry. For high binding energies, H2 freezes out on the grain forming an H2 ice. This is not physically realistic, and we suggest a change in the rate equations. The abundance ranges found are in reasonable agreement with astronomical ice observations. Pearson correlation coefficients revealed that the binding energy of HCO, HNO, CH2, and C correlate most strongly with the abundance of dominant ice species. Finally, the formation route of complex organic molecules was found to be sensitive to the branching ratios of H2CO hydrogenation

    Upper limits to interstellar NH^+ and para-NH_2^− abundances. Herschel-HIFI observations towards Sgr B2 (M) and G10.6−0.4 (W31C)

    Get PDF
    The understanding of interstellar nitrogen chemistry has improved significantly with recent results from the Herschel Space Observatory. To set even better constraints, we report here on deep searches for the NH^+ ground state rotational transition J = 1.5−0.5 of the ^2Π_(1/2) lower spin ladder, with fine-structure transitions at 1013 and 1019 GHz, and the para-NH_2^− 1_(1,1)−0_(0,0) rotational transition at 934 GHz towards Sgr B2 (M) and G10.6−0.4 (W31C) using the Herschel Heterodyne Instrument for the Far-Infrared (HIFI). No clear detections of NH^+ are made and the derived upper limits relative to the total number of hydrogen nuclei are ≲2 × 10^(-12) and ≲7 × 10^(-13) in the Sgr B2 (M) molecular envelope and in the G10.6−0.4 molecular cloud, respectively. The searches are, however, complicated by the fact that the 1 013 GHz transition lies only −2.5 km s^(-1) from a CH_2NH line, which is seen in absorption in Sgr B2 (M), and that the hyperfine structure components in the 1019 GHz transition are spread over 134 km s^(-1). Searches for the so far undetected NH_2^− anion turned out to be unfruitful towards G10.6−0.4, while the para-NH_2^− 1_(1,1)−0_(0,0) transition was tentatively detected towards Sgr B2 (M) at a velocity of 19 km s^(-1). Assuming that the absorption occurs at the nominal source velocity of +64 km s^(-1), the rest frequency would be 933.996 GHz, offset by 141 MHz from our estimated value. Using this feature as an upper limit, we found N(p-NH_2^−) ≲4 × 10^(11) cm^(-2), which implies an abundance of ≲8 × 10^(-13) in the Sgr B2 (M) molecular envelope. The upper limits for both species in the diffuse line-of-sight gas are less than 0.1 to 2% of the values found for NH, NH_2, and NH_3 towards both sources, and the abundance limits are ≲2−4 × 10^(-11). An updated pseudo time-dependent chemical model with constant physical conditions, including both gas-phase and surface chemistry, predicts an NH^+ abundance a few times lower than our present upper limits in diffuse gas and under typical Sgr B2 (M) envelope conditions. The NH_2^− abundance is predicted to be several orders of magnitudes lower than our observed limits, hence not supporting our tentative detection. Thus, while NH_2^− may be very difficult to detect in interstellar space, it could, on the other hand, be possible to detect NH^+ in regions where the ionisation rates of H_2 and N are greatly enhanced

    An applied methodology for stakeholder identification in transdisciplinary research

    Get PDF
    In this paper we present a novel methodology for identifying stakeholders for the purpose of engaging with them in transdisciplinary, sustainability research projects. In transdisciplinary research, it is important to identify a range of stakeholders prior to the problem-focussed stages of research. Early engagement with diverse stakeholders creates space for them to influence the research process, including problem definition, from the start. However, current stakeholder analysis approaches ignore this initial identification process, or position it within the subsequent content-focussed stages of research. Our methodology was designed as part of a research project into a range of soil threats in seventeen case study locations throughout Europe. Our methodology was designed to be systematic across all sites. It is based on a snowball sampling approach that can be implemented by researchers with no prior experience of stakeholder research, and without requiring significant financial or time resources. It therefore fosters transdisciplinarity by empowering physical scientists to identify stakeholders and understand their roles. We describe the design process and outcomes, and consider their applicability to other research projects. Our methodology therefore consists of a two-phase process of design and implementation of an identification questionnaire. By explicitly including a design phase into the process, it is possible to tailor our methodology to other research projects

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    An Ice Age JWST inventory of dense molecular cloud ices

    Get PDF
    Icy grain mantles are the main reservoir of the volatile elements that link chemical processes in dark, interstellar clouds with the formation of planets and composition of their atmospheres. The initial ice composition is set in the cold, dense parts of molecular clouds, prior to the onset of star formation. With the exquisite sensitivity of JWST, this critical stage of ice evolution is now accessible for detailed study. Here we show the first results of the Early Release Science program "Ice Age" that reveal the rich composition of these dense cloud ices. Weak ices, including, 13^{13}CO2_2, OCN^-, 13^{13}CO, OCS, and COMs functional groups are now detected along two pre-stellar lines of sight. The 12^{12}CO2_2 ice profile indicates modest growth of the icy grains. Column densities of the major and minor ice species indicate that ices contribute between 2 and 19% of the bulk budgets of the key C, O, N, and S elements. Our results suggest that the formation of simple and complex molecules could begin early in a water-ice rich environment.Comment: To appear in Nature Astronomy on January 23rd, 2023. 33 pages, 16 figures, 3 tables; includes extended and supplemental data sections. Part of the JWST Ice Age Early Release Science program's science enabling products. Enhanced spectra downloadable on Zenodo at the following DOI: 10.5281/zenodo.750123

    RNA sequencing to predict response to TNF-\u3b1 inhibitors reveals possible mechanism for nonresponse in smokers

    Get PDF
    Several studies have employed microarray-based profiling to predict response to tumor necrosis factor-alpha inhibitors (TNFi) in rheumatoid arthritis (RA); yet efforts to validate these targets have failed to show predictive abilities acceptable for clinical practice
    corecore