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ORIGINAL RESEARCH

RNA sequencing to predict response to TNF-α inhibitors reveals possible
mechanism for nonresponse in smokers
Bart V.J. Cuppena*, Marzia Rossatob,c*, Ruth D.E. Fritsch-Storka,d,e, Arno N. Concepciona, Suzanne P. Linn-Raskerf,
Johannes W.J. Bijlsmaa, Jacob M. van Laara, Floris P.J.G. Lafebera and Timothy R. Radstakea,bon behalf of all SRU
investigators

aRheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; bLaboratory of Translational Immunology,
University Medical Center Utrecht, Utrecht, The Netherlands; cDepartment of Biotechnology, University of Verona, Verona, Italy; d1st Medical
Department & Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital,
Vienna, Austria; eSigmund Freud University, Vienna, Austria; fRheumatology, Meander Medisch Centrum, Amersfoort, Netherlands

ABSTRACT
Background: Several studies have employed microarray-based profiling to predict response to tumor
necrosis factor-alpha inhibitors (TNFi) in rheumatoid arthritis (RA); yet efforts to validate these targets
have failed to show predictive abilities acceptable for clinical practice.
Methods: The eighty most extreme responders and nonresponders to TNFi therapy were selected from
the observational BiOCURA cohort. RNA sequencing was performed on mRNA from peripheral blood
mononuclear cells (PBMCs) collected before initiation of treatment. The expression of pathways as well
as individual gene transcripts between responders and nonresponders was investigated. Promising
targets were technically replicated and validated in n = 40 new patients using qPCR assays.
Results: Before therapy initiation, nonresponders had lower expression of pathways related to inter-
feron and cytokine signaling, while also showing higher levels of two genes, GPR15 and SEMA6B
(p = 0.02). The two targets could be validated, however, additional analyses revealed that GPR15 and
SEMA6B did not independently predict response, but were rather dose-dependent markers of smoking
(p < 0.0001).
Conclusions: The study did not identify new transcripts ready to use in clinical practice, yet GPR15 and
SEMA6B were recognized as candidate explanatory markers for the reduced treatment success in RA
smokers.
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1. Background

Rheumatoid arthritis (RA) is a chronic, disabling disease that
mainly affects the synovial joints. With a large arsenal of
treatments including tumor necrosis factor-alpha inhibitors
(TNFi), RA disease activity decreases sufficiently in most, but
not all cases. The identification of responders and nonrespon-
ders before initiation of therapy would therefore aid in making
strategic treatment decisions and improve clinical outcomes.
Thus far, however, no biomarker to predict response to TNFi
treatment is robust enough to be used in clinical practice [1].

Although TNF does not act alone, it is considered to play an
instrumental role in the pathogenesis of RA [2]. Indeed, TNFα
plays a pleiotropic role in the immune system, including stimu-
lating cytokine production (including its own), enhancing the
expression of adhesion molecules and in neutrophil activation,
and it is also a costimulator of T cell activation and antibody
production by B cells [3]. From a scientific and commercial point
of view, TNFis are undoubtedly one the biggest successes of
rational drug design [4]. All TNFis (such as adalimumab,

infliximab, golimumab, certolizumab) specifically ligate with
transmembrane TNF and soluble TNF, thereby blocking TNFα
from binding with the TNF-receptor (TNFR) 1 and 2 on TNF
responsive cells, and preventing downstream signaling leading
to the transcription of inflammatory genes [2]. Besides TNF,
etanercept also blocks lymphotoxin alpha (LTα), a member of
the TNF family with the potency to activate the downstream
pathways after binding with TNFR1, TNFR2, tumor necrosis
factor receptor superfamily member 14 (TNFRSF14/HVEM recep-
tor) and, when bound to LTβ, with the lymphotoxin beta recep-
tor (LTBR/TNFR3) [2,4,5]. Any biomarkers of response are
therefore expected to have a role in any of the downstream
pathways of these mechanisms. However, although TNF is con-
sidered to play a major role in RA, the therapeutic efficacy is
comparable with therapeutics that specifically target other
inflammatory pathways (e.g. interleukin 6 receptor, T cell costi-
mulation blockade, and B cell depletion [6]. These observations
in clinical practice suggest a common final pathway that is
inhibited by all of these drugs: i.e. proinflammatory cytokine
production [6,7]. Biomarkers of TNFi response might therefore

CONTACT Bart V.J. Cuppen b.v.j.cuppen@gmail.com Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100,
Utrecht, The Netherlands
*These authors contributed equally to this work

Supplemental data for this article can be accessed here.

EXPERT REVIEW OF CLINICAL IMMUNOLOGY
2018, VOL. 14, NO. 7, 623–633
https://doi.org/10.1080/1744666X.2018.1480937

© 2018 Informa UK Limited, trading as Taylor & Francis Group

https://doi.org/10.1080/1744666X.2018.1480937
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/1744666X.2018.1480937&domain=pdf


also arise from more general immunologic pathways. These
biomarkers would then predict a general biological treatment
refractory RA, rather than a treatment-specific marker of non-
response. This knowledge is also of interest, as many more
treatment options are available, including combinations of sev-
eral drugs. In addition, an expected poor prognosis in terms of
therapeutic response may aid the patient and physician in
making long-term decisions. Therefore, discovering biomarkers
of drug response remains to be one of the major challenges
for RA.

Messenger RNAs (mRNAs) are of potential interest as biomar-
kers of response since they constitute the bridge between the
genetic and protein formation. In order to identify mRNA gene
transcripts able to predict response to biological treatment, the
transcriptome has been studied extensively by microarrays [8,9].
However, the results generated by these studies are heteroge-
neous and efforts to replicate models in external cohorts failed to
reach predictive abilities acceptable for clinical practice [10–12].
The inability to validate results in multiple cohorts might be par-
tially related to the technical drawbacks of microarrays. RNA
sequencing (RNA-seq) is a newer technique that overcomesmulti-
ple limitations characterizing microarrays and therefore will even-
tually been used more routinely for the measurement of mRNA
levels [13,14].Whereasmicroarray profiling is a chip-basedmethod
using a selected set of gene transcripts, RNA-seq is not based on a
predefined platform, and it is thus able to identify modulated
genes without any a-priori selection [15]. RNA-seq is also able to
quantify geneswith very low andhigh expressionmore accurately,
because it is characterized by less background noise and has no
(cross) hybridization issues [15,16]. In addition, due to its bigger
dynamic range, RNA-seq is more suitable for the quantification of
absolute gene expression, thus resulting in more reproducible
data [17–19]. One recent study employed RNA-seq-based tran-
scriptome analysis of neutrophils to predict the response to TNFi
and found that a combination of >100 interferon regulated tran-
scripts at baseline predicted response [20]. In a follow-up study, the
authors refined their selection further and additionally found neu-
trophil granule protein (NGP)-related transcripts to be of impor-
tance [21]. These were further narrowed down in a new cohort, in
which response could be predicted by expression of 2 IFN-related
genes and 1 NGP-related gene.

In this study, we sought to extend the search for gene tran-
scripts predictive of therapeutic response, by employing RNA-seq
on baseline mRNA of peripheral bloodmononuclear cells (PBMCs)
in RA patients treated with two distinct TNFi treatments, namely
adalimumab (ADA) and etanercept (ETN). Additionally, we aimed
to validate the identified predictors in a separate cohort and
investigated the association of gene expression with PBMC cell
subsets and clinical characteristics of patients.

2. Patients and methods

2.1. Clinical data collection

Patients initiating ADA or ETN therapy were selected from the
‘Biologicals and Outcome Compared and predicted Utrecht
region in Rheumatoid Arthritis’ (BiOCURA) study. BiOCURA is
an observational cohort, in which RA patients eligible for
biological treatment according to regular clinical practice

were enrolled and followed after start of treatment, in one
academic hospital and seven regional hospitals in the
Netherlands. Re-inclusion after switching to a different biolo-
gical treatment was possible, at which patients re-entered
baseline again. The study was approved by the local ethics
committee of the University Medical Center Utrecht and the
institutional review boards of the participating centers (see
Acknowledgement). Informed consent was obtained from
each patient.

Trained nurses collected all data, which included all clinical
parameters, joint counts and collection of blood. Visits were
scheduled at baseline (before initiation) and after 3, 6, and
12 months of treatment. Disease activity was assessed each
visit using the disease activity score based on a 28-joint count
(DAS28) and subsequently the European League Against
Rheumatism (EULAR) response compared with baseline was
calculated [22]. Thereby, this study design allowed the deter-
mination of a clinical response of each patient, on the basis of
three responses over the course of one year.

2.2. Patient selection

Two separate cohorts were composed: a discovery cohort to
select potentially predictive gene transcripts, and a validation
cohort to test if the results found in the discovery phase were
reproducible. The discovery cohort was formed by selecting
the most extreme patients regarding clinical response, among
all ADA and ETN treated patients included between June 2009
(start of BiOCURA) and October 2012. As patients switching
between biologicals were also included, patients did not
always initiate a TNFi when having a high disease activity
(DAS28 >5.1 [6]). Yet, patients with a baseline DAS28 <2.6,
usually due to involvement of joints that are not calculated in
the 28-joint count such as in the foot, were excluded from the
analysis in order to reduce the chance that limited improve-
ment in DAS28 resulted in misclassification as EULAR nonre-
sponders. Of all remaining patients (n = 74 ADA and n = 68
ETN), the top responding patients were identified after ranking
of patients according to the best three EULAR responses over
the course of 1 year (n = 20 for both ADA and ETN, from now
on called ‘responders’). The selection of poor responders, was
based on ranking of patients according to the least optimal
EULAR responses over the course of one year and/or (early)
discontinuation of TNFi treatment due to inefficacy (n = 20 for
both ADA and ETN, ‘nonresponders’). The selected 80 patients
were divided over four subgroups (ADA n = 20 responders
versus n = 20 nonresponders, and ETN n = 20 responders
versus 20 nonresponders), the top ten patients in each sub-
group with most extreme responses were named ‘extreme
responders’ and ‘extreme nonresponders’ to analyze groups
of patients with even clearer treatment outcomes.
Supplementary Figure 1 shows the DAS28 over time of all
selected patients.

For the validation cohort, responders (n = 10 each for ADA
and ETN) and nonresponders (n = 10 each for ADA and ETN)
were selected using the same criteria as in the discovery
cohort, among patients included from October 2012 until
June 2015 (n = 25 ADA and n = 40 ETN). Due to the smaller
size of the cohort from which patients were selected, the
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differences in clinical outcome between responders and non-
responders in the validation cohort was less extreme than in
the discovery cohort. The baseline characteristics for respon-
ders and nonresponders are shown in Table 1 and for respon-
ders and nonresponders split per cohort in Supplementary
Table 1.

2.3. Blood processing and RNA extraction

Blood was collected in a 70 ml lithium heparin tube and
PBMCs were isolated using Ficoll Paque Plus (GE Healthcare,
Uppsala, Sweden). 5*106 PBMCs were lysed for total RNA
isolation using RNeasy kit following the manufacturer’s
instructions (Qiagen). Quantification of RNA and purity was
assessed using Nanodrop (Thermo Fischer Scientific,
Waltham, Massachusetts, USA) and the quality with
Bioanalyzer (Agilent, Santa Clara, California, USA). RNA was
stored per 2 µg at −80°C until use. All RNA samples analyzed
had a RNA-integrity score (RIN) higher than 8 according to the
bioanalyzer assessment.

2.4. mRNA analyses

2.4.1. RNA sequencing
RNA-seq of the discovery cohort was performed at the Beijing
Genomics Institute (BGI, Hong Kong). RNA-seq libraries were
prepared starting from 100 ng total RNA using the TruSeq kit
(Illumina). Briefly, mRNA molecules were enriched by using the
oligo(dT) magnetic beads and fragmented into short frag-
ments (about 200 bp). After conversion to double-stranded
cDNA using random hexamer-primer, end reparation and 3ʹ-
end single-nucleotide A (adenine) addition were performed.
Finally, sequencing adaptors were ligated to the fragments
that were subsequently enriched by PCR amplification.

Quality and quantity of RNA-seq libraries were determined
using, respectively, the Agilent 2100 Bioanaylzer and the ABI
StepOnePlus Real-Time PCR System. The library products were
sequenced on an Illumina HiSeqTM 2000 sequencer using 50bp
single-end read, generating 20 million clean reads per sample.
After quality filtering according to the BGI pipeline, reads were
aligned to the GrCh38 reference human genome (Genome
Reference consortium) and the H. sapiens transcriptome
(Ensembl, version 78) using SOAPaligner/SOAP2 [23] obtaining
an average map rate of 87.76% and 79.78%, respectively
(Supplementary File 1). Summed exon read counts per gene
were estimated using HTSeq-count [24]. Differential expres-
sion analysis was performed using the negative binomial dis-
tribution-based method implemented in DESeq on the
summed exon read counts per gene [25]. Gene expression
levels were calculated as Reads per kilo base per million
mapped reads (RPKM), according to the formula: numReads/
(geneLength/1000 * totalNumReads/1,000,000). A filter was
applied to exclude all genes with a mean reads per kilobase
per million mapped reads (RPKM) lower than 0.5, as genes
with very low expression levels are less reliably measured by
RNA-seq [14], and therefore are less suitable as biomarkers
[26]. Group comparisons were performed between six sub-
groups: nonresponders versus responders to ADA, ETN and
all TNFi (pooled ADA and ETN), and extreme nonresponders
versus extreme responders to ADA, ETN and all TNFi.

2.4.2. RT-qPCR analyses
For the technical replication and validation experiments,
Taqman gene expression qPCR kits for SEMA6B
(Hs00220339_m1), GPR15 (Hs00922903_s1), ACTB
(Hs99999903_m1), and GAPDH (Hs99999905_m1) were used
(ThermoFisher). ACTB and GADPH were selected as reference
genes since they were both highly expressed and stable

Table 1. Baseline characteristics of patients, split for treatment, and response.

Item

ADA (n = 60) ETN (n = 60)

Non-resp (n = 30) Resp (n = 30) p-value Non-resp (n = 30) Resp (n = 30) p-value

Female gender, n (%) 21 (70) 21 (70) 1.00 25 (83) 21 (70) 0.36
Age, mean years ±sd 54.4 ± 10.9 53.5 ± 12.7 0.76 58.3 ± 9.2 55.1 ± 10.5 0.22
Current smoker, n (%) 16 (53) 8 (26.7) 0.06 8 (26.7) 7 (23.3) 1.00
RF positivity, n (%) 16 (53) 21 (70) 0.29 20 (67) 22 (73) 0.78
ACPA positivity, n (%) 19 (63) 19 (63) 1.00 19 (63) 26 (87) 0.07
CRP, median (IQR) 5.2 (1.6–10.5) 5.5 (2.0–12.3) 0.78 4.0 (2.0–9.0) 8.5 (4.0–18.3) 0.03
No. of previously used bDMARDs 0.48 1.00

0 20 (67) 23 (78) 22 (73) 22 (73)
1 9 (30) 7 (23) 7 (23) 7 (23)
2 1 (3) 0 (0) 1 (3) 1 (3)

Concomitant treatment, n (%) 29 (97) 29 (97) 1.00 27 (90) 29 (97) 0.61
MTX, n (%) 21 (70) 27 (90) 0.10 18 (60) 25 (83) 0.08
SSZ, n (%) 2 (7) 4 (13) 0.67 4 (13) 2 (7) 0.67
HCQ, n (%) 8 (27) 7 (23) 1.00 10 (33) 11 (37) 1.00
GC, n (%) 15 (50) 4 (13) 0.01 11 (37) 6 (20) 0.25

Baseline DAS28, mean ±sd 3.9 ± 1.4 4.7 ± 0.9 0.01 4.3 ± 1.2 4.6 ± 0.9 0.21
TJC, median (IQR) 5.0 (1.0–13.0) 7.0 (4.0–14.3) 0.35 6.5 (2.8–11.3) 5.0 (2.8–11.3) 0.87
SJC, median (IQR) 0.0 (0.0–4.0) 2.0 (0.0–4.0) 0.03 1.0 (0.0–3.3) 2.0 (0.8–4.0) 0.20
VAS-GH, mean ±sd 55.2 ± 23.8 63.8 ± 22.0 0.15 55.5 ± 22.8 55.1 ± 10.5 0.76
ESR, median (IQR) 11.0 (3.8–26.0) 16.5 (9.0–32.0) 0.14 13.0 (5.8–33.8) 21.0 (14.3–39.5) 0.07

Patients were selected from the observational BiOCURA cohort based on treatment outcome over the course of one year after start of either ADA or ETN. The
presented clinical characteristics for responders (resp) and nonresponders (non-resp) are all before treatment initiation. P-values for comparisons were calculated
by means of an independent sample t-test, Mann–Whitney U test, fisher exact test (2*2) or chi-square (>2*2) based on distribution of the clinical parameter.

ACPA: anti-citrullinated protein antibody, ADA: adalimumab, bDMARDs: biological disease-modifying antirheumatic drugs, CRP: C-reactive protein, ESR: erythrocyte
sedimentation rate, ETN: etanercept, GC: glucocorticoid, HCQ: hydroxychloroquine, IQR: interquartile range, MTX: methotrexate, RF: rheumatoid factor, SJC: swollen
joint count, SSZ: sulfasalazine, TJC: tender joint count, VAS-GH: visual analogue scale general health.
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between responders and nonresponders (log2FC <0.03).
Briefly, 0.3 µg PBMC-derived RNA was used as starting material
for both the technical replication (n = 80) and validation
analysis (n = 40). cDNA was synthesized from RNA using the
iScripttm synthesis kit (Biorad), according to the manufacturer’s
instructions, while using the following thermal cycler condi-
tions: 5 min, 25°C, 30 min 42°C, 5 min 85°C. Quantification of
gene transcripts was performed in duplicate from 2 μl 6-times
diluted cDNA, TaqMan-specific primers of the gene expression
assay and TaqMan Fast Advance Master Mix in a final volume
of 15 µl, on a Quantstudio 12kflex Real-Time PCR system
(LifeTechnologies) using the following thermal cycler condi-
tions: 2 min, 50°C; 20 sec, 95°C; 45 cycles of 1 sec, 95°C; 20 sec,
60°C. Data were analyzed according to the comparative
threshold cycle method [27], after normalization by the
selected housekeeping genes. The fold change (FC) was cal-
culated based on one randomly chosen sample that was set as
1 and analyzed on each qPCR plate, thus allowing proper
comparison of data across different plates.

2.5. Flow cytometry

After isolation from whole blood, PBMCs were stained by
using specific monoclonal antibodies and analyzed by fluores-
cence-activated cell sorting (FACS) using an FACS-LSRII (BD) in
order to determine the abundance of specific mononuclear
cell subsets: anti-CD45 (FITC, Beckman Coultier) was used to
identify leukocytes, anti-CD3 (FITC, Beckman Coultier) for T
cells, anti-CD4 (PECy5, Dako) for CD4 T cells, anti-CD8 (PE,
BD) for CD8 T cells, anti-CD14 (PE, Beckman Coultier) for
monocytes, anti-CD16 + 56 (PE, Beckman Coultier) for NK
cells, anti-CD19 (FITC, BD) for B cells. Per sample, 30,000 events
were registered, after which these data were further analyzed
using FlowJo software (Tree star, Ashland, OR, USA).

2.6. Statistical analyses

2.6.1. Pathway enrichment analysis
Pathway enrichment analyses was performed on the complete
set of expressed genes (i.e. with mean expression >0.5 RPKM),
using the online available tool Gene Set Enrichment Analyses
(GSEA [28]). GSEA is a computational method that determines
whether a predefined set of genes, e.g. a pathway, shows
statistically significant and concordant differences between
two biological states, in this case responders and nonrespon-
ders. GSEA analysis was performed on the relative expression
of genes in all TNFi nonresponders versus responders using
the REACTOME pathway database [29] as source of gene lists.
Enriched pathways with a Benjamini & Hochberg adjusted
p-value (B&H adj. p-val.) lower than 0.20 were considered
significantly enriched [28].

A second pathway enrichment analysis was performed on
all protein-coding genes identified as differentially expressed
in responders versus nonresponders via the web-portal
Toppfun (https://toppgene.cchmc.org/enrichment.jsp [30],).

To verify whether the baseline expression of genes down-
stream of TNFα and lymphotoxin-alpha (LTα) were differen-
tially expressed in responders versus nonresponders,
intracellular pathways activated by the TNFα and LTα

receptors were retrieved from the Kyoto Encyclopedia of
Genes and Genomes (KEGG [31], ID 04668 + 04064 (http://
www.genome.jp/kegg/pathway.html); the expression of genes
belonging to these pathways was derived from the differential
gene expression analysis, without the application of a restric-
tion based on minimal expression (i.e. RPKM>0.5).

2.6.2. Selection of relevant genes
In order to identify the most interesting individual targets in
the context of TNFi response, we selected genes that signifi-
cantly predicted response in multiple subgroups. Genes with
absolute log2(FC)>0.58 (i.e. a corresponding FC<0.67 or >1.5)
and nominal p-value<0.05 were considered significantly differ-
ent and relevant in the context of TNFi response. These cut-
offs were set low to not miss any important genes, whereas
the validation phase was supposed to test if the targets are
reliable and replicable. We considered genes that emerged in
multiple comparisons as most promising targets, especially
when seen in both nonresponders versus responders and
extreme nonresponders versus extreme responders, as this
can be considered a small-scale internal validation. The
genes of particular interest were plotted in GraphPad Prism
software (GraphPad, Lo Jolla, CA, USA) as the reads RPKM of
(excellent) nonresponders versus (excellent) responders.
Sensitivities and specificities (i.e. the proportion of, respec-
tively, responders and nonresponders to TNFi that are cor-
rectly identified as such) for genes were calculated on the
log(RPKM)-values with the cut-off based on the Youden’s
index [32].

2.6.3. Influencing parameters
We investigated whether the expression of selected genes (as
measured by single qPCR) was related to the relative subset
composition of PBMCs (as measured by flow cytometry). Plots
for gene expression versus percentage of cells on all 120
patients (development + validation cohort) were made in
Graphpad, and correlations and p-values were calculated by
a Spearman’s r.

We additionally investigated whether the gene expression
of the selected genes (as measured by qPCR) in the complete
cohort (n = 120) associated with several patient characteristics
and RA (treatment)-specific clinical parameters. We performed
a linear regression on the ddCt values of the genes with these
parameters as independent variables and performed a back-
ward selection procedure (p < 0.05), so that the most expla-
natory parameters remained.

3. Results

3.1. Multiple immune-related pathways are modulated
at baseline in nonresponders to TNFi

In order to identify gene transcripts and pathways differen-
tially expressed in responders versus nonresponders before
the initiation of ADA and ETN treatment, transcriptome analy-
sis by RNA-seq was performed on baseline PBMCs from a
cohort of 80 RA patients: 40 for each treatment, including 20
responders and 20 nonresponders. To enhance the discovery
power, the patients selected for this analysis had the best and

626 B. V. J. CUPPEN ET AL.

https://toppgene.cchmc.org/enrichment.jsp
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html


poorest responses over the course of one year after therapy
(Material and Methods and Supplementary Figure 1). Within
these groups, the top-10 in ranking based on EULAR response
were named ‘extreme responders’ and ‘extreme nonrespon-
ders.’ These subgroups were also compared to push the dis-
covery power even further thanks to the enhanced difference
in the clinical outcome. Supplementary Table 2 reports in
details the total number of genes that had different baseline
levels in responders to treatment vs. nonresponders, in the
different comparisons tested. Overall, 178 unique genes were
expressed higher or lower at baseline in nonresponders.

To identify the pathways that were different at baseline in
nonresponders, we performed GSEA enrichment analysis on
the set of measured transcripts with a minimal level of expres-
sion (RPKM >0.5, i.e. 12,716 genes). In total, 26 pathways were
significantly differentially expressed in nonresponders com-
pared to responders prior to treatment. Among these, seven
pathways could be directly linked to immune response: three
interferon related (all expressed lower), two virus (influenza)
life-cycle related (both expressed higher), one cytokine signal-
ing related (expressed lower), and one MHC class II related
(expressed lower) (Supplementary Table 3). Further investiga-
tion on the gene content of these seven pathways demon-
strated that around 67% (228 of 338) of enriched genes were
annotated to multiple immunological pathways, thus consti-
tuting a core enrichment gene set (Supplementary File 2).

GO-term enrichment analysis on all 178 selected unique
targets confirmed that, also among the most robustly differ-
entially expressed genes, pathways related to immune

processes were over-represented, such as ‘antigen-binding’
and ‘immune response’ (Table 2).

Manual inspection of the genes involved in the downstream
pathways of TNFa and LTα, the targets of ADA and ETN, demon-
strated that none of them was significantly differentially
expressed in more than one subgroup prior to start of treatment
(data not shown).

3.2. Responders and nonresponders have different
expression levels of GPR15 and SEMA6B

In order to identify specific targets that could be used for pre-
diction of TNFi response, we further narrowed down those gene
transcripts differentially expressed in multiple comparisons, out
of the six considered (Supplementary Table 4). Overall we
observed a small number of genes predictive of response to
both TNFi treatment: six genes were differentially expressed in
all nonresponders versus responders, and 22 genes in all extreme
nonresponders versus extreme responders. The overlap in pre-
dictive genes between these two comparisons consisted of two
targets: GPR15 and SEMA6B. Since SEMA6Bwas also predictive in
the two ADA-specific comparisons and GPR15 in ADA subgroup
with extreme responses, we considered these the most interest-
ing targets and focused further analyses on these two genes.
Moreover we observed that GPR15 and SEMA6B showed similar
trends in the ETN comparisons, with a FC (p-value) for GPR15 of
1.63 (0.09) and for SEMA6B 1.94 (0.20) for ETN responders versus
nonresponders. The expression of GPR15 and SEMA6B as

Table 2. Pathways and gene ontology (GO) biological processes related to the 178 selected genes. All 178 genes with a minimal expression (RPKM >0.5) and a
significant difference between responders and nonresponders (nominal p < 0.05) with an absolute log2FC >0.58, were used as input for a Toppgene pathway
enrichment analysis. 146/178 gene could be annotated to functional pathways, among which especially immune-related pathways were overrepresented. Shown are
the top 10 gene ontology (GO) molecular functions (MF)/biological processes (BP) and pathways, as based on nominal p-values (not shown). After a Benjamini &
Hochberg correction of the p-value (B&H adj. P-val), all pathways in the top 10 were still significantly enriched.

Source Pathway

B&H
adjusted
p-value

Genes
total in
pathway

No. of
gene
hits Enriched genes

GeneRIF New genetic associations detected in a host
response study to hepatitis B vaccine.

2.05E-06 826 20 SLAMF8, COL4A3, FCRL2, HLA-B, HLA-C, FPR3, FCRLA, TNFRSF10C,
ADORA3, ORM1, FCRL1, COCH, CD19, MS4A1, CD22, SIGLEC6,
TNFRSF13C, C1QC, CD79A, CLEC10A

GeneRIF Association study of B cell marker gene
polymorphisms in European Caucasian patients
with systemic sclerosis.

2.05E-06 4 4 CD19, MS4A1, CD22, CD24

GO: BP Immune response 7.06E-06 1572 33 MRC1, LILRB3, HLA-A, HLA-B, HLA-C, FOS, TNIP3, VSIG4, POU2AF1,
TNFRSF10C, CD209, BLK, ADORA3, JUN, CD1E, THBS1, COCH,
CD19, MS4A1, ERAP2, IGHD, IGHG1, IGHM, IGKC, CD24,
TNFRSF13C, TNFRSF13B, C1QC, CCL3L1, CD79A, PAWR, PAX5,
CLEC10A

GO: MF Antigen binding 3.91E-06 120 10 HLA-A, HLA-B, HLA-C, CD209, CD1E, MS4A1, IGHD, IGHG1, IGHM,
IGKC

GeneRIF Association of maternal histocompatibility at class
II HLA loci with maternal microchimerism in the
fetus.

1.10E-05 7 4 HLA-A, HLA-B, HLA-C, GSTM1

GeneRIF Functional characterization of the human
immunodeficiency virus type 1 Nef acidic
domain.

1.10E-05 10 4 HLA-A, HLA-B, HLA-C, JUN

GO: BP Adaptive immune response 1.20E-04 402 15 LILRB3, HLA-A, HLA-B, CD209, CD1E, ERAP2, IGHD, IGHG1, IGHM,
IGKC, TNFRSF13C, TNFRSF13B, C1QC, CD79A, CLEC10A

GO: BP B cell receptor signaling pathway 1.98E-04 65 7 BLK, CD19, IGHD, IGHG1, IGHM, IGKC, CD79A
GO: BP Antigen processing and presentation of

endogenous peptide antigen via MHC class I via
ER pathway, TAP independent

1.98E-04 3 3 HLA-A, HLA-B, HLA-C

GO: BP Regulation of immune response 3.27E-04 899 21 HLA-A, HLA-B, HLA-C, FOS, TNIP3, VSIG4, CD209, BLK, ADORA3,
JUN, COCH, CD19, IGHD, IGHG1, IGHM, IGKC, CD24, TNFRSF13C,
C1QC, CD79A, PAWR
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measured by RNA-seq is displayed in Figure 1. GPR15 showed a
sensitivity of 55% and specificity of 75% to distinguish nonre-
sponders from responders, whereas SEMA6B showed a sensitiv-
ity of 37.5% and specificity of 92.5%, (as determined by the
Receiver Operating Characteristic (ROC) curve, Supplementary
Figure 2). These high specificities indicate that the implementa-
tion of SEMA6B and GPR15 measurement in a potential clinical
test would be especially suitable to accurately identify (mainly
ADA) nonresponders, with the clinical implication of withholding
treatment when the risk of response is extremely low. Combining
the genes did not result in better discriminating abilities, with a
slightly improved sensitivity of 60.0%, yet a lower specifi-
city (67.5%).

3.3. GPR15 and SEMA6B are markers for smoking, rather
than independent predictors

In order to validate GPR15 and SEMA6B as predictors of
response to TNFi therapy, the expression of GPR15 and
SEMA6B was analyzed using quantitative PCR in the discovery
cohort (i.e. technical replication, n = 80) as well as in a new

cohort of patients (validation, n = 40). Technical replication in
the discovery cohort showed comparable differences for all
comparisons, yet in all cases the magnitude and statistical
significance decreased to some extent (Table 3).
Nevertheless, the observed differences were small enough to
assume that they emerged from intrinsic variations between
the two techniques, as demonstrated by the high positive
correlation between the RNA-seq and qPCR measurements
(r = 0.883 (p < 0.001) and r = 0.857 (p < 0.001) for GPR15
and SEMA6B, respectively)(Supplementary Figure 3). In the
validation cohort, the expression levels of SEMA6B still showed
a significant upregulation in ADA nonresponders (FC 6.18,
p = 0.01), although in ETN, still a not significant and now
inverse direction as compared to the discovery phase was
observed (FC = 0.68, p = 0.63) (Figure 2). GPR15 was also
replicated as being expressed higher at baseline in nonrespon-
ders to ADA (although not significant, with FC = 1.67,
p = 0.30), whereas in ETN also an inverse direction was seen
(FC = 0.52, p = 0.20).

The ability to validate SEMA6B and (to some extend) GPR15
as predictors of ADA response, raised the question whether

Figure 1. GPR15 and SEMA6B expression in the discovery cohort, split for ADA and ETN nonresponders versus responders. Shown are the baseline gene expression
levels of (a) GPR15 and (b) SEMA6B as measured by RNA sequencing, in reads per kilobase per million mapped reads (RPKM), for nonresponders and responders to
treatment (n = 40 ADA and n = 40 ETN) in the discovery cohort. Black dots indicate the extreme (non)responders among all patients, whereas the gray dots represent
the remaining (non)responders. The horizontal bar indicates the geometric mean.

Table 3. Technical replication of GPR15 and SEMA6B using single qPCR. In the discovery cohort of 80 patients, GPR15 and SEMA6B were selected as potential
predictors for response to ADA and ETN. In order to test the technical replicability of these genes, all 80 samples were re-measured using single RT-qPCR assays.
Shown are the fold changes (FC) of nonresponders versus responders, and the corresponding p-value (based on DESeq-analysis for discovery, and t-test on ddCt in
the replication). The differential expression in the technical replication was in the same direction, however, the FCs were in general less extreme, with a parallel
increase in p-value.

GPR15 SEMA6B

Discovery Tech. replication Discovery Tech. Replication

Subgroups n FC p-val FC p-val FC p-val FC p-val
All resp 80 1.752 0.02 1.494 0.08 2.190 0.02 1.432 0.27
All extr 20 2.073 0.04 1.514 0.27 3.603 0.00 2.723 0.02
Ada resp 40 1.873 0.09 1.559 0.18 2.431 0.04 1.476 0.41
Ada extr 20 3.891 0.01 2.977 0.05 4.516 0.01 4.238 0.04
Etn resp 40 1.628 0.09 1.432 0.28 1.941 0.20 1.390 0.37
Etn extr 20 1.086 0.93 0.770 0.59 2.681 0.12 1.750 0.30
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other parameters influenced the relation between the expres-
sion levels of these transcripts and the response to therapy. To
verify whether SEMA6B and GPR15 could be a reflection of the
PBMC cell-subset composition before mRNA extraction, we
correlated gene expression (n = 120 in discovery and valida-
tion) with the percentage of cell subsets as measured by FACS
(Supplementary Figures 4 and 5). SEMA6B expression did not
significantly correlate with any cell-subset, whereas GPR15
expression only very weakly negatively correlated with the
relative number of monocytes (r = − 0.20, p = 0.04) and B
cells (r = 0.25, p = 0.01), indicating that PBMC composition
probably had no influence on the observed results.
Additionally, we verified whether the expression of these
genes was associated with any baseline clinical characteristics
of the patients enrolled in the study. Higher expression
SEMA6B was most notably associated with current smoking
(B = 2.41, p < 0.001) and the (log-transformed) C-reactive
protein levels (B = 0.32 p = 0.029), whereas higher expression
of GPR15 was also associated with current smoking (B = 2.18,
p < 0.001) and lower expression with concomitant glucocorti-
coid use (B = -0.551, p = 0.015). The association between
smoking and high levels of GPR15 and SEMA6B explained
why these genes were identified as robustly differentially
expressed only in the discovery phase: in the discovery cohort,
indeed, nonresponders included 15% more current smokers
(Supplementary Table 1). In line with this observation, the
ability to validate SEMA6B and (to some extent) GPR15 in
ADA can be explained by a 30% higher proportion of smokers
among nonresponders. We further investigated the relation-
ship between the expression of these two genes and smoking,
by stratifying the patients into never smokers (n = 33), past
smokers (n = 48) and current smokers (n = 39), while conco-
mitantly accounting for the number of daily smoked cigarettes
and total smoked pack years (PY) (Figure 3). While focusing on
current smokers, we observed positive correlations with extre-
mely significant p-values (p < 0.0001) between the number of

daily smoked cigarettes and PY with the expression of GPR15
and SEMA6B, indicating that there is a dose-response relation-
ship for the exposure to smoke and upregulation of these
genes. Additionally, the highly significant positive correlation
between PY and expression of GPR15 seen in past smokers,
indicates that there is a certain prolonged and cumulative
effect of (heavy) smoking and the upregulation of this gene,
whereas for SEMA6B these effects were not observed.

4. Discussion

In this study, we investigated the baseline transcriptome of
PBMC mRNA to identify predictors of response to TNFi.
Although in the discovery phase we used loose cut-offs (i.e.
selection of patients with extreme clinical response and no
correction for multiple testing) to decrease chances of exclud-
ing potentially interesting targets, only a limited number of
genes were differentially expressed at baseline in nonrespon-
ders versus responders and very few were identified in com-
mon between the two treatment considered, ADA and ETN.
This could be related to multiple factors, such as the hetero-
geneity of the disease, or within the cohort selected, or due to
concomitant/previous additional treatments. Also, the analysis
at a single time point (baseline) and the focus on PBMCs
rather than synovial tissue of the affected joints, may have
impacted the results. Thus, to overcome false-positive findings
in the discovery phase, we narrowed down the selection to
genes differentially expressed in multiple comparisons only,
and aimed to validate the findings in an additional cohort of
patients. Several additional analyses were performed to assess
the biomedical relevance and the generalizability of our
findings.

Our approach led to the selection of GPR15 and SEMA6B as
the most promising gene transcripts for prediction of TNFi-
response, of which SEMA6B could be validated in a separate

Figure 2. GPR15 and SEMA6B expression in the validation cohort, split for ADA and ETN nonresponders versus responders. For no-responders and responders to
ADA (n = 20) and ETN (n = 20) treatment in the validation cohort, the baseline relative gene expression levels of (a) GPR15 and (b) SEMA6B as measured by RT-qPCR,
is shown as the fold change (FC). The horizontal bar indicates the geometric mean.
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cohort of consecutively included ADA treated patients.
However, additional analyses revealed that the expression of
both genes was strongly associated with smoking, which was
unequally distributed between responders and nonrespon-
ders. It is know that smoking increases RA susceptibility and
disease severity [6,33], and it has been frequently reported,
although not consistently, that smoking negatively impacts
treatment effects in RA [34–39]. The exact mechanism under-
lying these differences between smoking and non-smoking RA
patients remains unclear [33,39]; however, it is possible that
SEMA6B and GPR15 play a role in the mechanism(s) that leads
to a reduced therapeutic effect of TNFi. This hypothesis is not
unlikely, given that SEMA6B and GPR15 are strongly and dose
dependently related to smoking and probably play a relevant
role in the pathophysiology of RA. SEMA6B is a protein with
pro-proliferative effects via its receptor Plexin-A4, which forms
complexes with fibroblast growth factor-receptor 1 and 2
(FGFR1-2) and vascular endothelial growth factor-receptor 2
(VEGFR2), thereby inducing the signal transduction of these
receptors [40]. VEGF and bFGF are the ligands of these recep-
tors, and are known to have instrumental roles in RA: VEGF is a
critical angiogenetic factor responsible for vascular prolifera-
tion and blood vessel invasion of the synovial lining mem-
brane in RA, whereas acidic FGF (FGF-1) and basic FGF (FGF-2)
have also been implicated in synovial hyperplasia and apop-
tosis resistance in adult RA [41]. Considering that SEMA6B has

the ability to influence these important proinflammatory path-
ways in RA pathogenesis, its upregulation may explain the
insensitivity to treatment. Additionally and in line with this
study, upregulation of SEMA6B in smokers has been described
before in a genome-wide study on PBMC mRNA
(p < 0.0001) [42].

In turn, GPR15 or Brother of Bonzo (BOB) is expressed
on the cell surface of monocytes and neutrophils, and is a
chemo attractant for T cells [43,44]. GPR15 mRNA expres-
sion is increased in the synovium and in the peripheral
blood leukocytes of RA patients compared to non-RA con-
trols [44,45]; similarly, GPR15 protein is increased in syno-
vial tissue macrophages and in circulating monocytes and
neutrophils [44]. We found a clear dose–response effect of
smoking on the expression of GPR15, which also showed a
cumulative and prolonged effect, as the expression of
GPR15 was still higher in past smokers. The strong positive
correlation between smoking and a higher expression of
GPR15 is also supported by other studies, showing DNA
hypomethylation of the GPR15 promoter and subsequent
increased mRNA expression in smokers [46–51]. Because of
its biological role and the strong relation with smoking,
GPR15 is a good candidate to explain the health hazards
of smoking with regard to chronic inflammatory disease
[48], and in particular the reduced therapeutic effect to
TNFi.

Figure 3. Correlations between smoking and GPR15 and SEMA6B expression. Graphs show the correlation between the relative gene expression levels of GPR15 and
SEMA6B as measured by single qPCR assay and (a,b) the number of cigarettes smoked per day and (c,d) pack years (PY) of smoking (i.e. 1 PY = 20 cigarettes per day
for one year). Patients were categorized as current smokers, discontinued smokers and never-smokers, the latter of which were given arbitrarily the lowest value for
daily cigarettes or pack years. All FC values >1 were in (discontinued) smokers, except for three patients who declared to have never smoked. These three patients
were contacted in retrospect to ask if there was any possibility of smoke inhalation at the time of the baseline visit. Two patients declared that they did not inhale
smoke around treatment initiation, whereas one (with GPR15 FC = 0.8 and SEMA6B FC = 4.6) declared to be occasionally in a room with a smoker. A clear positive
correlation for daily cigarettes and pack years with GPR15 and SEMA6B expression was seen in current smokers, and for pack years and GPR15 expression in
discontinued smokers (all p < 0.0001).
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Taken together, our results and those from other studies, it
appears that smoking dose dependently increases GPR15 and
SEMA6B expression in PBMCs and thereby directly or indirectly
induces, respectively, T cell involvement and synovial vascular
proliferation, leading to a more severe and treatment refrac-
tory RA. However, as the exact upstream and downstream
pathways related to these genes are largely unknown, the
possibility to investigate if the aberrant expression of
SEMA6B and GPR15 reflects a larger dysregulation of the
transcriptome using these data is limited.

Future functional in vivo studies should address whether the
mRNA and protein expression of SEMA6B and GPR15 are modu-
lated in the synovial tissue of a joint before and after (heavy)
smoke exposure. The specific link between SEMA6B and GPR15
on T cell recruitment and synovial vascular proliferation, and
subsequent RA severity and nonresponse to treatments, repre-
sent another but more challenging topic to investigate.

Interestingly, neither the TNFα nor LTα-pathway self, but
rather general immunologic pathways at baseline were found
to be related to a decreased response to ADA and ETN. This
finding supports the hypothesis, already suggested by Smolen
et al. [6], that TNFis (and non-TNFis) eventually mediate their
efficacy by interfering with a common final pathway, namely
proinflammatory cytokine production. Among the most altered
pathways, we identified three interferon (IFN)-related pathways
as being expressed significantly lower in nonresponders at base-
line. In line with this observation are the results Wright and
colleagues [20], who compared the expression of genes in neu-
trophils of RA patients (before start of treatment) and non-RA
control patients by RNA-seq, and found the IFN-signaling path-
way to be as most specific for RA. Subsequently, upregulation of
an IFN-score (calculated on the expression levels of these and
other IFN-related genes) predicted EULAR good response to TNFi
(ADA, ETN and golimumab) in these RA patients, with an area
under the ROC curve of 0.76. In our selection of 178 genes
predictive of response, five genes overlapped with those
included in the IFN-score: CCL3L3, THBS1, HLA-A, HLA-B, and
HLA-C. However, the proposed IFN-score by Wright et al. calcu-
lated on the basis of our PBMC RNA-seq data-set did not predict
the TNFi response (AUC = 0.55, 95% CI = 0.42–0.68)
(Supplementary Figure 6). The predictive ability of the three
genes selected in the second study of Wright et al. [21], was
also weak when applied to our cohort of responders and non-
responders, even after refitting the regression coefficients for
each gene (AUC = 0.56, 95% CI = 0.34–0.69). The differences
between the results of our study and those produced by and
Wright et al. could be related to the starting cell source (PBMC
versus neutrophils), with neutrophils having been identified as
biggest contributors in type I IFN signature seen in RA [52,53].
Therefore, the (partially) replicable results of Wright et al. remain
of major interest, and the validity of their model based on the
expression of only three genes on neutrophil RNA should be
established in an independent cohort with fixed parameters.

5. Conclusions

Efforts of the present and previous studies have not provided
gene transcripts that are able to independently and consis-
tently predict response to TNFi treatment. However, we

demonstrated that pathways altered in nonresponders at
baseline are rather linked to general immune functions and
cytokines than to TNFα and LTα specifically, indicating that all
biological treatments target a common cytokine related path-
way, as previously suggested by others. Furthermore, the
identification of GPR15 and SEMA6B expression as markers of
response and (substitute) dose-dependent indicators of smok-
ing, opens new venues for the identification of the molecular
mechanisms underlying TNFi refractory RA.

Key issues

● The identification of responders and nonresponders before
initiation of therapy with tumor necrosis factor-alpha inhi-
bitors (TNFi) would aid in making strategic treatment deci-
sions and improve clinical outcomes in RA patients.

● To date, no biomarker to predict response to TNFi treat-
ment has been shown to be robust enough to use in clinical
practice.

● This study searches for gene transcripts predicting thera-
peutic response, by employing RNA-seq on baseline mRNA
of peripheral blood mononuclear cells (PBMCs) in RA
patients treated with two distinct TNFi treatments, namely
adalimumab (ADA) and etanercept (ETN).

● This study did not identify new transcripts ready to use in
clinical practice, yet GPR15 and SEMA6B were recognized as
candidate explanatory markers for the reduced treatment
success observed in RA smokers.
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