31 research outputs found

    Update of EULAR recommendations for the treatment of systemic sclerosis

    Get PDF
    The aim was to update the 2009 European League against Rheumatism (EULAR) recommendations for the treatment of systemic sclerosis (SSc), with attention to new therapeutic questions. Update of the previous treatment recommendations was performed according to EULAR standard operating procedures. The task force consisted of 32 SSc clinical experts from Europe and the USA, 2 patients nominated by the pan-European patient association for SSc (Federation of European Scleroderma Associations (FESCA)), a clinical epidemiologist and 2 research fellows. All centres from the EULAR Scleroderma Trials and Research group were invited to submit and select clinical questions concerning SSc treatment using a Delphi approach. Accordingly, 46 clinical questions addressing 26 different interventions were selected for systematic literature review. The new recommendations were based on the available evidence and developed in a consensus meeting with clinical experts and patients. The procedure resulted in 16 recommendations being developed (instead of 14 in 2009) that address treatment of several SSc-related organ complications: Raynaud's phenomenon (RP), digital ulcers (DUs), pulmonary arterial hypertension (PAH), skin and lung disease, scleroderma renal crisis and gastrointestinal involvement. Compared with the 2009 recommendations, the 2016 recommendations include phosphodiesterase type 5 (PDE-5) inhibitors for the treatment of SSc-related RP and DUs, riociguat, new aspects for endothelin receptor antagonists, prostacyclin analogues and PDE-5 inhibitors for SSc-related PAH. New recommendations regarding the use of fluoxetine for SSc-related RP and haematopoietic stem cell transplantation for selected patients with rapidly progressive SSc were also added. In addition, several comments regarding other treatments addressed in clinical questions and suggestions for the SSc research agenda were formulated. These updated data-derived and consensus-derived recommendations will help rheumatologists to manage patients with SSc in an evidence-based way. These recommendations also give directions for future clinical research in SSc

    Cryptococcus neoformans Recovered From Olive Trees (Olea europaea) in Turkey Reveal Allopatry With African and South American Lineages

    No full text
    PubMedID: 31788454Cryptococcus species are life-threatening human fungal pathogens that cause cryptococcal meningoencephalitis in both immunocompromised and healthy hosts. The natural environmental niches of Cryptococcus include pigeon (Columba livia) guano, soil, and a variety of tree species such as Eucalyptus camaldulensis, Ceratonia siliqua, Platanus orientalis, and Pinus spp. Genetic and genomic studies of extensive sample collections have provided insights into the population distribution and composition of different Cryptococcus species in geographic regions around the world. However, few such studies examined Cryptococcus in Turkey. We sampled 388 Olea europaea (olive) and 132 E. camaldulensis trees from seven locations in coastal and inland areas of the Aegean region of Anatolian Turkey in September 2016 to investigate the distribution and genetic diversity present in the natural Cryptococcus population. We isolated 84 Cryptococcus neoformans strains (83 MAT? and 1 MATa) and 3 Cryptococcus deneoformans strains (all MAT?) from 87 (22.4% of surveyed) O. europaea trees; a total of 32 C. neoformans strains were isolated from 32 (24.2%) of the E. camaldulensis trees, all of which were MAT?. A statistically significant difference was observed in the frequency of C. neoformans isolation between coastal and inland areas (P < 0.05). Interestingly, the MATa C. neoformans isolate was fertile in laboratory crosses with VNI and VNB MAT? tester strains and produced robust hyphae, basidia, and basidiospores, thus suggesting potential sexual reproduction in the natural population. Sequencing analyses of the URA5 gene identified at least five different genotypes among the isolates. Population genetics and genomic analyses revealed that most of the isolates in Turkey belong to the VNBII lineage of C. neoformans, which is predominantly found in southern Africa; these isolates are part of a distinct minor clade within VNBII that includes several isolates from Zambia and Brazil. Our study provides insights into the geographic distribution of different C. neoformans lineages in the Mediterranean region and highlights the need for wider geographic sampling to gain a better understanding of the natural habitats, migration, epidemiology, and evolution of this important human fungal pathogen. © Copyright © 2019 Ergin, Şengül, Aksoy, Döğen, Sun, Averette, Cuomo, Seyedmousavi, Heitman and Ilkit.R01 AI50113-15, AI39115-21, U19AI110818 National Institutes of Health NIH Clinical CenterThe authors are grateful to the members of the Heitman laboratory at the Duke University Department of Molecular Genetics and Microbiology (Durham, NC, USA) for their valuable assistance with laboratory analyses. Funding. This work was supported by NIH/NIAID R37 MERIT Award AI39115-21 and NIH/NIAID R01 AI50113-15 to JH. CC was supported by NIH/NIAID grant number U19AI110818. SSe was supported by the Intramural Research Program of the National Institutes of Health, Clinical Center, Department of Laboratory Medicine

    The fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization

    No full text
    We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant host

    Paracoccidioides spp. catalases and their role in antioxidant defense against host defense responses

    No full text
    Dimorphic human pathogenic fungi interact with host effector cells resisting their microbicidal mechanisms. Yeast cells are able of surviving within the tough environment of the phagolysosome by expressing an antioxidant defense system that provides protection against host-derived reactive oxygen species (ROS). This includes the production of catalases (CATs). Here we identified and analyzed the role of CAT isoforms in Paracoccidioides, the etiological agent of paracoccidioidomycosis. Firstly, we found that one of these isoforms was absent in the closely related dimorphic pathogen Coccidioides and dermatophytes, but all of them were conserved in Paracoccidioides, Histoplasma and Blastomyces species. We probed the contribution of CATs in Paracoccidioides by determining the gene expression levels of each isoform through quantitative RT-qPCR, in both the yeast and mycelia phases, and during the morphological switch (transition and germination), as well as in response to oxidative agents and during interaction with neutrophils. PbCATP was preferentially expressed in the pathogenic yeast phase, and was associated to the response against exogenous H2O2. Therefore, we created and analyzed the virulence defects of a knockdown strain for this isoform, and found that CATP protects yeast cells from H2O2 generated in vitro and is relevant during lung infection. On the other hand, CATA and CATB seem to contribute to ROS homeostasis in Paracoccidioides cells, during endogenous oxidative stress. CAT isoforms in Paracoccidioides might be coordinately regulated during development and dimorphism, and differentially expressed in response to different stresses to control ROS homeostasis during the infectious process, contributing to the virulence of Paracoccidioides. © 2017 Elsevier Inc

    The importance of antimicrobial resistance in medical mycology.

    No full text
    Prior to the SARS-CoV-2 pandemic, antibiotic resistance was listed as the major global health care priority. Some analyses, including the O'Neill report, have predicted that deaths due to drug-resistant bacterial infections may eclipse the total number of cancer deaths by 2050. Although fungal infections remain in the shadow of public awareness, total attributable annual deaths are similar to, or exceeds, global mortalities due to malaria, tuberculosis or HIV. The impact of fungal infections has been exacerbated by the steady rise of antifungal drug resistant strains and species which reflects the widespread use of antifungals for prophylaxis and therapy, and in the case of azole resistance in Aspergillus, has been linked to the widespread agricultural use of antifungals. This review, based on a workshop hosted by the Medical Research Council and the University of Exeter, illuminates the problem of antifungal resistance and suggests how this growing threat might be mitigated

    Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis.

    No full text
    Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals.IMPORTANCE Understanding how natural pathogen populations evolve and identifying the determinants of genetic variation are central issues in evolutionary biology. Pneumocystis, a fungal pathogen which infects mammals exclusively, provides opportunities to explore these issues. In humans, Pneumocystis can cause a life-threatening pneumonia in immunosuppressed individuals. In analysis of different Pneumocystis species infecting humans, rats, and mice, we found that there are high infection rates and that natural populations maintain a high level of genetic variation despite low levels of recombination. We found no evidence of population structuring by geography. Our comparisons of the times of divergence of these species to their respective hosts suggest that Pneumocystis may have undergone recent host shifts. The results demonstrate that Pneumocystis strains are widely disseminated geographically and provide a new understanding of the evolution of these pathogens
    corecore