15,253 research outputs found

    Studies on Emission Processes in Optically Pumped Mercury Vapor

    Get PDF
    Electron transitions in optically pumped mercury vapor emissio

    Restoration of eucalypt grassy woodland: effects of experimental interventions on ground-layer vegetation

    Get PDF
    We report on the effects of broad-scale restoration treatments on the ground layer of eucalypt grassy woodland in south-eastern Australia. The experiment was conducted in two conservation reserves from which livestock grazing had previously been removed. Changes in biomass, species diversity, ground-cover attributes and life-form were analysed over a 4-year period in relation to the following experimental interventions: (1) reduced kangaroo density, (2) addition of coarse woody debris and (3) fire (a single burn). Reducing kangaroo density doubled total biomass in one reserve, but no effects on exotic biomass, species counts or ground cover attributes were observed. Coarse woody debris also promoted biomass, particularly exotic annual forbs, as well as plant diversity in one of the reserves. The single burn reduced biomass, but changed little else. Overall, we found the main driver of change to be the favourable growth seasons that had followed a period of drought. This resulted in biomass increasing by 67%, (mostly owing to the growth of perennial native grasses), whereas overall native species counts increased by 18%, and exotic species declined by 20% over the 4-year observation period. Strategic management of grazing pressure, use of fire where biomass has accumulated and placement of coarse woody debris in areas of persistent erosion will contribute to improvements in soil and vegetation condition, and gains in biodiversity, in the future.Funding and in-kind logistic support for this project was provided by the ACT Government as part of an Australian Research Council Linkage Grant (LP0561817; LP110100126). Drafts of the manuscript were read by Saul Cunningham and Ben Macdonald

    Strategic Network Formation with Attack and Immunization

    Full text link
    Strategic network formation arises where agents receive benefit from connections to other agents, but also incur costs for forming links. We consider a new network formation game that incorporates an adversarial attack, as well as immunization against attack. An agent's benefit is the expected size of her connected component post-attack, and agents may also choose to immunize themselves from attack at some additional cost. Our framework is a stylized model of settings where reachability rather than centrality is the primary concern and vertices vulnerable to attacks may reduce risk via costly measures. In the reachability benefit model without attack or immunization, the set of equilibria is the empty graph and any tree. The introduction of attack and immunization changes the game dramatically; new equilibrium topologies emerge, some more sparse and some more dense than trees. We show that, under a mild assumption on the adversary, every equilibrium network with nn agents contains at most 2n−42n-4 edges for n≥4n\geq 4. So despite permitting topologies denser than trees, the amount of overbuilding is limited. We also show that attack and immunization don't significantly erode social welfare: every non-trivial equilibrium with respect to several adversaries has welfare at least as that of any equilibrium in the attack-free model. We complement our theory with simulations demonstrating fast convergence of a new bounded rationality dynamic which generalizes linkstable best response but is considerably more powerful in our game. The simulations further elucidate the wide variety of asymmetric equilibria and demonstrate topological consequences of the dynamics e.g. heavy-tailed degree distributions. Finally, we report on a behavioral experiment on our game with over 100 participants, where despite the complexity of the game, the resulting network was surprisingly close to equilibrium.Comment: The short version of this paper appears in the proceedings of WINE-1

    Applying black hole perturbation theory to numerically generated spacetimes

    Get PDF
    Nonspherical perturbation theory has been necessary to understand the meaning of radiation in spacetimes generated through fully nonlinear numerical relativity. Recently, perturbation techniques have been found to be successful for the time evolution of initial data found by nonlinear methods. Anticipating that such an approach will prove useful in a variety of problems, we give here both the practical steps, and a discussion of the underlying theory, for taking numerically generated data on an initial hypersurface as initial value data and extracting data that can be considered to be nonspherical perturbations.Comment: 14 pages, revtex3.0, 5 figure

    Colliding Black Holes: The Close Limit

    Get PDF
    The problem of the mutual attraction and joining of two black holes is of importance as both a source of gravitational waves and as a testbed of numerical relativity. If the holes start out close enough that they are initially surrounded by a common horizon, the problem can be viewed as a perturbation of a single black hole. We take initial data due to Misner for close black holes, apply perturbation theory and evolve the data with the Zerilli equation. The computed gravitational radiation agrees with and extends the results of full numerical computations.Comment: 4 pages, Revtex, 3 postscript figures included, CGPG-94/2-

    Head-on collisions of black holes: the particle limit

    Get PDF
    We compute gravitational radiation waveforms, spectra and energies for a point particle of mass m0m_0 falling from rest at radius r0r_0 into a Schwarzschild hole of mass MM. This radiation is found to lowest order in (m0/M)(m_0/M) with the use of a Laplace transform. In contrast with numerical relativity results for head-on collisions of equal-mass holes, the radiated energy is found not to be a monotonically increasing function of initial separation; there is a local radiated-energy maximum at r0≈4.5Mr_0\approx4.5M. The present results, along with results for infall from infinity, provide a complete catalog of waveforms and spectra for particle infall. We give a representative sample from that catalog and an interesting observation: Unlike the simple spectra for other head-on collisions (either of particle and hole, or of equal mass holes) the spectra for ∞>r0>∼5M\infty>r_0>\sim5M show a series of evenly spaced bumps. A simple explanation is given for this. Lastly, our energy vs. r0r_0 results are compared with approximation methods used elsewhere, for small and for large initial separation.Comment: 15 pages, REVTeX, 25 figure

    Jet fuel property changes and their effect on producibility and cost in the U.S., Canada, and Europe

    Get PDF
    The effects of changes in properties and blending stocks on the refinery output and cost of jet fuel in the U.S., Canada, and Europe were determined. Computerized refinery models that minimize production costs and incorporated a 1981 cost structure and supply/demand projections to the year 2010 were used. Except in the West U.S., no changes in jet fuel properties were required to meet all projected demands, even allowing for deteriorating crude qualities and changes in competing product demand. In the West U.S., property changes or the use of cracked blendstocks were projected to be required after 1990 to meet expected demand. Generally, relaxation of aromatics and freezing point, or the use of cracked stocks produced similar results, i.e., jet fuel output could be increased by up to a factor of three or its production cost lowered by up to $10/cu m. High quality hydrocracked stocks are now used on a limited basis to produce jet fuel. The conversion of U.S. and NATO military forces from wide-cut to kerosene-based jet fuel is addressed. This conversion resulted in increased costs of several hundred million dollars annually. These costs can be reduced by relaxing kerosene jet fuel properties, using cracked stocks and/or considering the greater volumetric energy content of kerosene jet fuel

    A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro

    Get PDF
    Basic cellular and network mechanisms underlying gamma frequency oscillations (30–80 Hz) have been well characterized in the hippocampus and associated structures. In these regions, gamma rhythms are seen as an emergent property of networks of principal cells and fast-spiking interneurons. In contrast, in the neocortex a number of elegant studies have shown that specific types of principal neuron exist that are capable of generating powerful gamma frequency outputs on the basis of their intrinsic conductances alone. These fast rhythmic bursting (FRB) neurons (sometimes referred to as "chattering" cells) are activated by sensory stimuli and generate multiple action potentials per gamma period. Here, we demonstrate that FRB neurons may function by providing a large-scale input to an axon plexus consisting of gap-junctionally connected axons from both FRB neurons and their anatomically similar counterparts regular spiking neurons. The resulting network gamma oscillation shares all of the properties of gamma oscillations generated in the hippocampus but with the additional critical dependence on multiple spiking in FRB cells

    myTunes: Digital music library users and their self-images

    Get PDF
    This investigation explored the relationships between individuals’ self-images and their interactions with their digital music collections via the commercially predominant program iTunes. Sixty-nine university students completed an internet-based Musical Self-Images Questionnaire (MSIQ) along with a series of questions concerning their iTunes collections. The majority of participants were highly engaged with music, regardless of their varied musical backgrounds. Factor analysis of the MSIQ data revealed two distinct self-image groups, which we label as ‘musical practitioner’ (linking ‘overall musician’, ‘performer’, ‘composer’, ‘teacher’, and ‘listener’) and ‘music consumer’ (linking ‘listener’, ‘fan’, and ‘technology user’). Participants used an average of seven attributes to categorize their music, and most consistently used one in particular to sort their collections. Those who rated themselves as higher level performers and fans used the playlist function (which involves compiling sequences of selected tracks) more often than those with lower self-ratings on those scales
    • …
    corecore