30 research outputs found

    The velocity--shape alignment of clusters and the kinetic Sunyaev--Zeldovich effect

    Full text link
    We use the Millennium simulation to probe the correlation between cluster velocities and their shapes and the consequences for measurements of the kinetic Sunyaev-Zeldovich (kSZ) effect. Halos are generally prolate ellipsoids with orientations that are correlated with those of nearby halos. We measure the mean streaming velocities of halos along the lines that separate them, demonstrating that the peculiar velocities and the long axes of halos tend to be somewhat aligned, especially for the most massive halos. Since the kSZ effect is proportional to the line-of-sight velocity and the optical depth of the cluster, the alignment results in a strong enhancement of the kSZ signature in clusters moving along the line of sight. This effect has not been taken into account in many analyses of kSZ signatures.Comment: 5 pages, 5 figures, 1 table; accepted for publication in MNRA

    Cost of tuberculosis treatment in low- and middle-income countries: systematic review and meta-regression.

    Get PDF
    BACKGROUND: Despite a scarcity of tuberculosis (TB) cost data, a substantial body of evidence has been accumulating for drug-susceptible TB (DS-TB) treatment. In this study, we review unit costs for DS-TB treatment from a provider´s perspective. We also examine factors driving cost variations and extrapolate unit costs across low- and middle-income countries (LMICs).METHODS: We searched published and grey literature for any empirically collected TB cost estimates. We selected a subgroup of estimates looking at DS-TB treatment. We extracted information on activities and inputs included. We standardised costs into an average per person-month, fitted a multi-level regression model and cross-validated country-level predictions. We then extrapolated estimates for facility-based, directly observed DS-TB treatment across countries.RESULTS: We included 95 cost estimates from 28 studies across 17 countries. Costs predictions were sensitive to characteristics such as delivery mode, whether hospitalisation was included, and inputs accounted for, as well as gross domestic product per capita. Extrapolation results are presented with uncertainty intervals (UIs) for LMICs. Predicted median costs per 6 months of treatment were US315.30(95315.30 (95% CI US222.60-US417.20)forlow−income,US417.20) for low-income, US527.10 (95% CI US395.70−US395.70-US743.70) for lower middle-income and US896.40(95896.40 (95% CI US654.00-US$1214.40) for upper middle-income countries.CONCLUSIONS: Our study provides country-level DS-TB treatment cost estimates suitable for priority setting. These estimates, while not standing as a substitute for local high-quality primary data, can inform global, regional and national exercises

    The cold gas content of bulgeless dwarf galaxies

    Get PDF
    We present an analysis of the neutral hydrogen (H i) properties of a fully cosmological hydrodynamical dwarf galaxy, run with varying simulation parameters. As reported by Governato et al., the high-resolution, high star formation density threshold version of this galaxy is the first simulation to result in the successful reproduction of a (dwarf) spiral galaxy without any associated stellar bulge. We have set out to compare in detail the H i distribution and kinematics of this simulated bulgeless disc with what is observed in a sample of nearby dwarfs. To do so, we extracted the radial gas density profiles, velocity dispersion (e.g. velocity ellipsoid and turbulence) and the power spectrum of structure within the cold interstellar medium (ISM) from the simulations. The highest resolution dwarf, when using a high-density star formation threshold comparable to densities of giant molecular clouds, possesses bulk characteristics consistent with those observed in nature, though the cold gas is not as radially extended as that observed in nearby dwarfs, resulting in somewhat excessive surface densities. The lines-of-sight velocity dispersion radial profiles have values that are in good agreement with the observed dwarf galaxies, but due to the fact that only the streaming velocities of particles are tracked, a correction to include the thermal velocities can lead to profiles that are quite flat. The ISM power spectra of the simulations appear to possess more power on smaller spatial scales than that of the Small Magellanic Cloud. We conclude that unavoidable limitations remain due to the unresolved physics of star formation and feedback within parsec-scale molecular cloud

    nIFTy Galaxy Cluster simulations VI: The dynamical imprint of substructure on gaseous cluster outskirts

    Get PDF
    Galaxy cluster outskirts mark the transition region from the mildly non-linear cosmic web to the highly non-linear, virialised, cluster interior. It is in this transition region that the intra-cluster medium (ICM) begins to influence the properties of accreting galaxies and groups, as ram pressure impacts a galaxy's cold gas content and subsequent star formation rate. Conversely, the thermodynamical properties of the ICM in this transition region should also feel the influence of accreting substructure (i.e. galaxies and groups), whose passage can drive shocks. In this paper, we use a suite of cosmological hydrodynamical zoom simulations of a single galaxy cluster, drawn from the nIFTy comparison project, to study how the dynamics of substructure accreted from the cosmic web influences the thermodynamical properties of the ICM in the cluster's outskirts. We demonstrate how features evident in radial profiles of the ICM (e.g. gas density and temperature) can be linked to strong shocks, transient and short-lived in nature, driven by the passage of substructure. The range of astrophysical codes and galaxy formation models in our comparison are broadly consistent in their predictions (e.g. agreeing when and where shocks occur, but differing in how strong shocks will be); this is as we would expect of a process driven by large-scale gravitational dynamics and strong, inefficiently radiating, shocks. This suggests that mapping such shock structures in the ICM in a cluster's outskirts (via e.g. radio synchrotron emission) could provide a complementary measure of its recent merger and accretion history

    Strengthening health systems to improve the value of tuberculosis diagnostics in South Africa: A cost and cost-effectiveness analysis.

    Get PDF
    BACKGROUND: In South Africa, replacing smear microscopy with Xpert-MTB/RIF (Xpert) for tuberculosis diagnosis did not reduce mortality and was cost-neutral. The unchanged mortality has been attributed to suboptimal Xpert implementation. We developed a mathematical model to explore how complementary investments may improve cost-effectiveness of the tuberculosis diagnostic algorithm. METHODS: Complementary investments in the tuberculosis diagnostic pathway were compared to the status quo. Investment scenarios following an initial Xpert test included actions to reduce pre-treatment loss-to-follow-up; supporting same-day clinical diagnosis of tuberculosis after a negative result; and improving access to further tuberculosis diagnostic tests following a negative result. We estimated costs, deaths and disability-adjusted-life-years (DALYs) averted from provider and societal perspectives. Sensitivity analyses explored the mediating influence of behavioural, disease- and organisational characteristics on investment effectiveness. FINDINGS: Among a cohort of symptomatic patients tested for tuberculosis, with an estimated active tuberculosis prevalence of 13%, reducing pre-treatment loss-to-follow-up from ~20% to ~0% led to a 4% (uncertainty interval [UI] 3; 4%) reduction in mortality compared to the Xpert scenario. Improving access to further tuberculosis diagnostic tests from ~4% to 90% among those with an initial negative Xpert result reduced overall mortality by 28% (UI 27; 28) at $39.70/ DALY averted. Effectiveness of investment scenarios to improve access to further diagnostic tests was dependent on a high return rate for follow-up visits. INTERPRETATION: Investing in direct and indirect costs to support the TB diagnostic pathway is potentially highly cost-effective

    nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    Get PDF
    We examine subhaloes and galaxies residing in a simulated Λ\Lambda cold dark matter galaxy cluster (M200critM^{crit} _{200} = 1.1 × 1015^{15} h−1h^{−1} M⊙_\odot) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics\textit{full feedback physics} runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲\lesssim10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲\lesssim0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and VmaxV_{max} distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully–Fisher relation is similar in almost all codes, the number of galaxies with 109^9 h−1h^{−1} M⊙_\odot ≲\lesssim M∗M_∗ ≲\lesssim 1012^{12} h−1h^{−1} M⊙_\odot can differ by a factor of 4. Individual galaxies show code-to-code scatter of ~0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments\textit{in all environments} remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ~0.2–0.4 dex

    nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    Get PDF
    We examine subhaloes and galaxies residing in a simulated Λ\Lambda cold dark matter galaxy cluster (M200critM^{crit} _{200} = 1.1 × 1015^{15} h−1h^{−1} M⊙_\odot) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics\textit{full feedback physics} runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲\lesssim10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲\lesssim0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and VmaxV_{max} distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully–Fisher relation is similar in almost all codes, the number of galaxies with 109^9 h−1h^{−1} M⊙_\odot ≲\lesssim M∗M_∗ ≲\lesssim 1012^{12} h−1h^{−1} M⊙_\odot can differ by a factor of 4. Individual galaxies show code-to-code scatter of ~0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments\textit{in all environments} remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ~0.2–0.4 dex

    nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region

    Get PDF
    We examine the properties of the galaxies and dark matter haloes residing in the cluster infall region surrounding the simulated Λ\Lambda cold dark matter galaxy cluster studied by Elahi et al. at zz = 0. The 1.1 × 1015^{15} h−1h^{−1} M⊙_\odot galaxy cluster has been simulated with eight different hydrodynamical codes containing a variety of hydrodynamic solvers and sub-grid schemes. All models completed a dark-matter-only, non-radiative and full-physics run from the same initial conditions. The simulations contain dark matter and gas with mass resolution mDMm_\text{DM} = 9.01 × 108^8 h−1h^{−1} M⊙_\odot and mgasm_\text{gas} = 1.9 × 108^8 h−1h^{−1} M⊙_\odot, respectively. We find that the synthetic cluster is surrounded by clear filamentary structures that contain ~60 per cent of haloes in the infall region with mass ~1012.5^{12.5}–1014^{14} h−1h^{−1} M⊙_\odot, including 2–3 group-sized haloes (>1013^{13} h−1h^{−1} M⊙_\odot). However, we find that only ~10 per cent of objects in the infall region are sub-haloes residing in haloes, which may suggest that there is not much ongoing pre-processing occurring in the infall region at zz = 0. By examining the baryonic content contained within the haloes, we also show that the code-to-code scatter in stellar fraction across all halo masses is typically ~2 orders of magnitude between the two most extreme cases, and this is predominantly due to the differences in sub-grid schemes and calibration procedures that each model uses. Models that do not include active galactic nucleus feedback typically produce too high stellar fractions compared to observations by at least ~1 order of magnitude.The authors would like the acknowledge the Centre for High Performance Computing in Rosebank, Cape Town, for financial support and for hosting the ‘Comparison Cape Town’ workshop in 2016, July. The authors would further like to acknowledge the support of the International Centre for Radio Astronomy Research (ICRAR) node at the University of Western Australia (UWA) in hosting the precursor workshop ‘Perth Simulated Cluster Comparison’ in 2015, March; the financial support of the UWA Research Collaboration Award 2014 and 2015 schemes; the financial support of the ARC Centre of Excellence for All Sky Astrophysics (CAASTRO) CE110001020 and ARC Discovery Projects DP130100117 and DP140100198. We would also like to thank the Instituto de Fisica Teorica (IFT-UAM/CSIC in Madrid) for its support, via the Centro de Excelencia Severo Ochoa Program under Grant No. SEV- 2012-0249, during the three-week workshop ‘nIFTy Cosmology’ in 2014, where the foundation for the whole comparison project was established. JA acknowledges support from a post-graduate award from STFC. PJE is supported by the SSimPL programme and the Sydney Institute for Astronomy (SIfA) and Australian Research Council (ARC) grants DP130100117 and DP140100198. AK is supported by the Ministerio de Econom´ıa y Competitividad (MINECO) in Spain through grant AYA2012-31101 as well as the ConsoliderIngenio 2010 Programme of the Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant MultiDark CSD2009-00064. ´ He also acknowledges support from the ARC grant DP140100198. He further thanks Noonday Underground for surface noise. STK acknowledges support from STFC through grant ST/L000768/1. CP acknowledges the support of the ARC through Future Fellowship FT130100041 and Discovery Project DP140100198. WC and CP acknowledge the support of ARC DP130100117. GY and FS acknowledge support from MINECO (Spain) through the grant AYA 2012-31101. GY thanks also the Red Espanola de Supercomputa- ˜ cion for granting the computing time in the Marenostrum Supercomputer at BSC, where all the MUSIC simulations have been performed. AMB is supported by the DFG Research Unit 1254 ‘Magnetisation of interstellar and intergalactic media’ and by the DFG Cluster of Excellence ‘Universe’. GM acknowledge support from the PRIN-MIUR 2012 Grant ‘The Evolution of Cosmic Baryons’ funded by the Italian Minister of University and Research, by the PRIN-INAF 2012 Grant ‘Multi-scale Simulations of Cosmic Structures’, by the INFN INDARK Grant and by the ‘Consorzio per la Fisica di Trieste’. IGM acknowledges support from an STFC Advanced Fellowship. EP acknowledges support by the ERC grant ‘The Emergence of Structure During the Epoch of Reionization’

    nIFTy galaxy cluster simulations II: radiative models

    Get PDF
    We have simulated the formation of a massive galaxy cluster (M200crit_{200}^{\rm crit} = 1.1×\times1015h−1M⊙^{15}h^{-1}M_{\odot}) in a Λ\LambdaCDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modeled with different radiative physical implementations - such as cooling, star formation and AGN feedback. We compare images of the cluster at z=0z=0, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al. (2015): radiative physics + classic SPH can produce entropy cores. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content- for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction
    corecore