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Abstract

Background

In South Africa, replacing smear microscopy with Xpert-MTB/RIF (Xpert) for tuberculosis

diagnosis did not reduce mortality and was cost-neutral. The unchanged mortality has been

attributed to suboptimal Xpert implementation. We developed a mathematical model to

explore how complementary investments may improve cost-effectiveness of the tuberculo-

sis diagnostic algorithm.

Methods

Complementary investments in the tuberculosis diagnostic pathway were compared to the

status quo. Investment scenarios following an initial Xpert test included actions to reduce

pre-treatment loss-to-follow-up; supporting same-day clinical diagnosis of tuberculosis after

a negative result; and improving access to further tuberculosis diagnostic tests following a

negative result. We estimated costs, deaths and disability-adjusted-life-years (DALYs)

averted from provider and societal perspectives. Sensitivity analyses explored the mediating

influence of behavioural, disease- and organisational characteristics on investment

effectiveness.

Findings

Among a cohort of symptomatic patients tested for tuberculosis, with an estimated active

tuberculosis prevalence of 13%, reducing pre-treatment loss-to-follow-up from ~20% to

~0% led to a 4% (uncertainty interval [UI] 3; 4%) reduction in mortality compared to the

Xpert scenario. Improving access to further tuberculosis diagnostic tests from ~4% to 90%
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among those with an initial negative Xpert result reduced overall mortality by 28% (UI 27;

28) at $39.70/ DALY averted. Effectiveness of investment scenarios to improve access to

further diagnostic tests was dependent on a high return rate for follow-up visits.

Interpretation

Investing in direct and indirect costs to support the TB diagnostic pathway is potentially

highly cost-effective.

Introduction

Globally, there is renewed interest in understanding how disease-specific investments function

in the context of broader health system challenges [1]. Alongside this interest is re-invigorated

enquiry into how best to support policy makers to assess joint technology and health systems

strengthening investments when introducing new technologies. A recent example of an invest-

ment with global importance is the roll-out of Xpert MTB/RIF (Xpert).

In 2011, South Africa started the national roll-out of Xpert as first-line tuberculosis diag-

nostic test, following the World Health Organization (WHO) recommendation [2]. The roll-

out was anticipated to result in more people starting tuberculosis treatment because of Xpert’s

higher sensitivity, thus reducing mortality [3]. In addition Xpert was expected to reduce the

time to MDR tuberculosis treatment start [4, 5]. However, in practice no significant impact on

tuberculosis-related morbidity, mortality, pre-treatment loss-to-follow-up (iLTFU) or time-to-

treatment for patients starting drug-sensitive tuberculosis (DS-TB) has been observed [6, 7].

Studies examining the impact on patients with multi-drug resistant (MDR) tuberculosis found

that Xpert reduced time-to-appropriate-treatment, although not to same day or same week, as

had been expected [8, 9]. Furthermore, an economic evaluation based on a pragmatic trial fol-

lowing the roll-out in South Africa (the XTEND trial) found that Xpert implementation was

both effect- and cost-neutral and was unlikely to improve the cost-effectiveness of the tubercu-

losis diagnostic algorithm [10]. The study concluded that implementation constraints may

have mediated the impact of Xpert under programmatic conditions [7]. Other countries

reported similar experiences with Xpert implementation. Placement of the test in the health

system, it’s integration into the laboratory infrastructure and diagnostic algorithm, as well as

patient linkages to treatment were found to be important mediators of costs and effects [11–

18].

For South Africa and beyond, policy makers need support to determine which complemen-

tary investments are required to strengthen the tuberculosis diagnostic pathway. To inform

this need and illustrate a potential approach to assessing combined diagnostic technology and

health systems investments, we fitted a purpose-built mathematical model to empirical data

from the XTEND trial [7]. We then explored which investments complementary to the Xpert-

based tuberculosis diagnostic algorithm would be most cost-effective in South Africa, and used

the model to identify drivers of the cost-effectiveness of these investments.

Methods

We conducted cost-effectiveness analyses of investments in health systems to support tubercu-

losis diagnosis. This analysis builds on previous modelling work that explored investments in
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patient pathways [19–22], by using patient-level cohort data from a pragmatic cluster-rando-

mised controlled trial (described in S1 Text).

Overview

Health systems investments are typically conceptualised as investments in health care infra-

structure, clinical guidelines, technology or human resources, with less emphasis on how the

relational aspect of health systems [23] may affect the costs and outcomes of an investment.

Clinical discretionary decision-points in patient care can be conceptualised as transactions

between patients and providers, occurring within a given organisational system. One may con-

sider these transactions as interactions between the hardware (technology, infrastructure and

finances) and software (formal or informal rules of practice, and beliefs that explain behaviour)

components of health systems [24]. While investment costs have been estimated by analysing

how the production of healthcare responds to an increase in need [25, 26], here we identified

patterns of provider behaviour and then modelled this behaviour as a function of resource

availability, process and relational interactions. This is implemented in the model by the medi-

ation of decisions along the patient pathway. A simplified visual representation of the model

and the decision points is shown in Fig 1 and is referred to in Table 2 [27]. The costs of deci-

sion-making processes includes the cost of regulating the decision as well as the opportunity

cost of the benefits forgone in the time taken to make the decision or in making the wrong

decision, the transaction cost [28: 86]. We modelled the value of additional investments to

strengthen these decision-making processes.

Mathematical model. A state-transition model with time-dependent Markov processes

was developed, simulating disease progression and interactions with the health system in a

symptomatic population being investigated for tuberculosis. Secondary benefits to the

Fig 1. Simplified schematic of the model. The figure is a simplified representation of the model, with the circular boxes representing health states and

the square boxes representing intermittent states used to model shorter time step process. The model structure is presented in more detail in S1 Text.

“A” refers to the decision-making process from a negative test result to starting treatment without bacteriological confirmation; “B” represents the

decision to continue testing for tuberculosis (negative pathway) in those with a negative test result; “C” is the behaviour around starting treatment after

a positive test results; “D” refers to the decision (based on an interpretation of the further diagnostic tests) to start treatment; and “E” refers to the

decision to start tuberculosis (TB) treatment after being ‘out of care’. � The model structures following the tuberculosis test are replicated for each of the

six patient types, those HIV negative (with and without tuberculosis), HIV positive not on antiretroviral therapy (with and without tuberculosis), and

those HIV positive on antiretroviral therapy (with and without tuberculosis). �� The treatments states are replicated for drug-sensitive and multi-drug

resistant tuberculosis treatment.

https://doi.org/10.1371/journal.pone.0251547.g001
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population due to tuberculosis transmission reduction are not included [29]. The analytical

timeframe is three years, representing the time until the population is either cured of this

tuberculosis episode, or dead. Patients move through the model in one-monthly steps to repre-

sent movement through treatment and from out of care, with additional structure added to

model shorter diagnostic processes. The model was implemented in TreeAge Pro 2018 and

datasets analysed using STATA 13.

In the model, six patient types defined by HIV, anti-retroviral therapy and true tuberculosis

status move through health states until reaching an absorbing state (cure or death). Patients

are symptomatic when entering the model, transition through a series of diagnostic processes,

and then move to one of four possible health states (1) ‘out of care’ if not started on treatment;

(2) drug-sensitive or multi-drug resistant tuberculosis treatment; (3) death; or (4) cured. The

‘cured’ state can be entered either after treatment or based on a self-cure rate.

Parameter estimation and model fitting

Transition probabilities and resource use were estimated from trial data (see Table 1). Where

treatment-related events occurred after the six-month trial period, data from published

cohorts and meta-analyses were used to construct the patient pathway until the end of the

treatment episode. The pragmatic nature of the trial did not allow for definitive confirmation

of TB diagnosis among trial participants. Unobservable parameters include the true TB preva-

lence in the population, and the predictive value of decisions to start treatment or request fur-

ther investigations. These parameters were estimated by calibrating the model’s mortality and

treatment outputs against those observed in the trial [45]. We estimated a plausible range of

values for the unobserved parameters and then iteratively fitted the mortality and time-to-

treatment curves from model outputs to trial outcomes until the shape of the respective curves

fitted using a range of goodness-of-fit measures [46: 260] (see S1 Text).

Cost analyses

The costs of providing and accessing care were estimated alongside the trial, using a combina-

tion of top-down and ingredients costing approaches [10, 47, 48]. HIV-care costs were

extracted from published sources (Table 1). Costs were estimated by multiplying unit costs by

the number of events incurred from data collected during the trial. Patient costs included

travel- and time-costs incurred by patients and caregivers when accessing care. Additionally,

income loss, the cost of caregiver’s time, interest on loans as well as the cost of nutritional sup-

plements were included. The opportunity cost of time was valued by multiplying time loss by

the pre-illness mean income of the cohort [44]. All costs were estimated in local currency

using 2013 prices and converted to US dollars using the average 2013 exchange rate of US

$1 = R9.62 (www.Oanda.com).

Investments

The pragmatic nature of the trial allowed us to identify gaps between ideal movement along

different decision nodes of the pathway and mediating variables of effectiveness in routine

care settings. Table 2 summarises the investment scenarios modelled and how they were

implemented in the model, with a visual representation of the model and decision points pro-

vided in Fig 1. We modelled five investment strategies to support the tuberculosis diagnostic

pathway. These included 1) reducing initial pre-treatment loss-to-follow-up (iLTFU), 2) sup-

porting same-day clinical diagnosis of tuberculosis after a negative test result (TfN), and 3)

improving access to further tuberculosis diagnostic tests following an initial negative result

(NP). In addition, two combination scenarios were modelled (iLTFU and TFN; iLTFU and
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Table 1. Summary of parameters and distributions.

Definition Mean and stratification Distribution Comments. References are listed as name of first

author, year (Reference).

Population
Gender 59.9% female Represents trial population. Churchyard. 2015 [7]

Age (IQR) 37 (29–48) years Fixed Represents trial population. Churchyard. 2015 [7]

Initial population disease characteristics HIVneg 0.314 (0.030); Dirichlet From trial population. Churchyard 2015 [7] Those with

unknown self-reported HIV status are assumed to be

HIV positive, not on ART.
HIVpos 0.531 (0.015);

ART 0.155 (0.005)

CD4 count in those with HIV (IQR) 315 (192–480) cells/μL Represents the microscopy arm of the trial population.

Churchyard. 2015 [7]

True TB prevalence (includes bacteriologically

confirmed -, clinical—and undiagnosed TB)

in the microscopy arm of the study.

13.0% Fixed Estimated from XTEND trial and model calibration.

Churchyard. 2015 [7]

Proportion of patients diagnosed with drug-

resistant TB, any diagnosis

4.0% (8/195) Represents trial population. Churchyard. 2015 [7].

Proportion of patients starting MDR-TB

treatment

2.0% (3/195) Represents what was observed in the XTEND trial.

Churchyard. 2015 [7]. Time to starting MDR TB

treatment was 11 and 33 days respectively.

Diagnosis, transition probabilities
Probability of a positive Xpert test result if

symptomatic and able to provide a sputum

sample, mean (standard deviation)

HIVneg 0.077 (0.03); Dirichlet Estimated from XTEND trial. Churchyard. 2015 [7]

HIVpos 0.132 (0.05);

ART 0.135 (0.03)

Probability of TB if patient had a positive test

result

HIVneg 0.877; Fixed Estimated based on GX sensitivity 0.86 in HIVneg; 0.79

in HIVpos, 0.94 for Rif resistance, and GX specificity of

0.99 in HIVneg, HIVpos, 0.98 for Rif resistance.

Steingart 2014 [30], Steingart 2006 [31], and Boehme

2011 [32].

HIVpos 0.936;

ART 0.938

Probability of TB if patient had a negative test

result

HIVneg 0.012; Fixed Unobserved parameter, estimated from model

calibration. Based on GX sensitivity 0.86 in HIVneg;

0.79 in HIVpos, 0.94 for Rif resistance, and GX

specificity of 0.99 in HIVneg, HIVpos, 0.98 for Rif

resistance. Steingart 2014 [30], Steingart 2006 [31], and

Boehme 2011 [32]. This includes a probability of a false

negative test result; HIVneg 0.012; HIVpos pre-ART

0.038; HIVpos ART 0.039 as well as a probability of

‘undiagnosed TB’. Undiagnosed TB includes those who

provide pauci-bacillary sputum or have extra-

pulmonary TB. Probability of undiagnosed, “hard-to-

diagnose” TB estimated to be 0.075 in those HIVpos

pre-ART and 0.075 those HIVpos.

HIVpos 0.113;

ART 0.114

Probability of starting treatment within 30

days of a positive test result, mean (standard

deviation)

HIVneg 0.882 (0.325); Dirichlet Estimated from XTEND trial. Churchyard et al. 2015

[7]HIVpos 0.802 (0.400);

ART 0.944 (0.236)

Probability of starting treatment within one

month of a negative test result without further

diagnostic tests

HIVneg_TB 0.535; HIVneg 0.002;

HIVpos_TB 0.072; HIVpos 0.009;

ART_TB 0.017; ART 0.003

Fixed Probability of starting treatment was estimated from

XTEND trial, whether this clinical decision was correct

(treatment started in those with TB vs those without)

was estimated through model calibration. Churchyard

et al. 2015 [7]. We therefore assume that clinicians are

unlikely to start treatment empirically in those HIV

negative.

Probability of receiving further investigations

after a negative test result

HIVpos_TB 0.041; HIVpos 0.041;

ART_TB 0.073; ART 0.073

Fixed Estimated from XTEND trial. Churchyard. 2015 [7].

McCarthy. 2016 [33].

Probability of starting TB treatment after

further diagnostic tests

HIVpos_TB 0.212; HIVpos 0.027;

ART_TB 0.217; ART 0.037

Fixed Estimated from XTEND trial and the model

calibration. Churchyard. 2015 [7]. McCarthy. 2016

[33].

Probability of starting TB treatment from ‘out of care’, by month: from all who do not start TB treatment within one month of the diagnostic test

(Continued)
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Table 1. (Continued)

Definition Mean and stratification Distribution Comments. References are listed as name of first

author, year (Reference).

Month 2 HIVneg_TB 0.928; HIVneg 0.005;

HIVpos_TB 0.164; HIVpos 0.000;

ART_TB 0.100; ART 0.000

Fixed Curve estimated from XTEND trial. Assume that the

behaviour from out of care remains the same.

Churchyard. 2015 [7].

Month 3 HIVneg_TB 0.756; HIVneg 0.000;

HIVpos_TB 0.066; HIVpos 0.000;

ART_TB 0.207; ART 0.000

Fixed Curve estimated from XTEND. Assume that the

behaviour from out of care remains the same.

Churchyard. 2015 [7].

Month 4 HIVneg_TB 0.000; HIVneg 0.005;

HIVpos_TB 0.146; HIVpos 0.000;

ART_TB 0.148; ART 0.000

Fixed Curve estimated from XTEND. Assume that the

behaviour from out of care remains the same.

Churchyard. 2015 [7].

Month 5 HIVneg_TB 0.000; HIVneg 0.015;

HIVpos_TB 0.064; HIVpos 0.000;

ART_TB 0.000; ART 0.000

Fixed Curve estimated from XTEND trial. Assume that the

behaviour from out of care remains the same.

Churchyard. 2015 [7].

Month 6 HIVneg_TB 0.000; HIVneg 0.010;

HIVpos_TB 0.060; HIVpos 0.000;

ART_TB 0.000; ART 0.000

Fixed Curve estimated from XTEND trial. Assume that the

behaviour from out of care remains the same.

Churchyard. 2015 [7].

Probability of starting MDR-TB treatment if

diagnosed with MDR-TB

HIVneg 0.025; HIVpos 0.019; ART 0.000 Dirichlet Estimated from XTEND trial. Churchyard. 2015 [7].

Treatment, transition probabilities
Probability of drug sensitive TB regimen

started if TB treatment started

HIVneg 0.952; HIVpos 0.969; ART_TB

0.834

Dirichlet Estimated from XTEND trial. Churchyard. 2015 [7].

Probability of MDR-TB regimen started if TB

treatment started, mean (standard deviation)

HIVneg 0.039 (0.208); HIVpos 0.023

(0.002); ART 0.000 (0.000);

Dirichlet Estimated from XTEND trial. Churchyard. 2015 [7].

Disease progression, transition probabilities
Average life expectancy at birth, South Africa 63 years Fixed From the rapid mortality surveillance report 2014.

Assumes that HIVpos patients who are on ART when

they enter the model would have the same life

expectancy as the general population (varied in the

sensitivity analysis). HIV specific mortality considered

in model through probabilities. Dorrington. 2015 [34].

Years of life remaining at death is estimated from the

difference between current age in model (mean age of

cohort + time in model) and the average life expectancy

at birth.

All-cause mortality in those without TB,

monthly, mean (standard deviation)

HIVneg 0.001 (0.0005); HIVpos 0.002

(0.000); ART 0.001 (0.001)

Dirichlet From Statistics South Africa report (P0309.3), mortality

and causes of death in South Africa: findings from

death notification [35].

Standardised mortality ratio for all-cause

mortality in patients post-TB treatment

3.76 Fixed Increased all-cause mortality in those with a previous

episode of TB [36]. Estimated as part of a systematic

review and meta-analysis.

Monthly mortality if living with TB, not

currently receiving treatment, mean (standard

deviation)

HIVneg 0.018 (0.020); HIVpos 0.132

(0.005); ART 0.039 (0.005)

Changes over

time

Based on Tiemersma. 2011 [37]. Used half-cycle

correction to adjust for earlier movement into

treatment in month 1 of the model.

Monthly mortality on treatment for those with

TB, mean (standard deviation)

HIVneg 0.002 (0.001); HIVpos 0.046

(0.002); ART 0.006 (0.003)

Changes over

time

Andrews 2012 [38]. Mohr 2015 [39]. Monthly mortality

reduction due to TB treatments added as distribution

over time, where mortality reduces to 10% of the

mortality of those with TB not on treatment at month 5

on treatment. Based on comparison with mortality on

treatment observed in the XTEND trial. Churchyard

2015 [7].

Disability weights, mean (standard deviation) HIVneg_TB 0.331 (0.057); HIVpos_TB

0.399 (0.070); HIVpos 0.221 (0.041); ART

0.053 (0.011); ART_TB 0.331 (0.057)

Beta Salomon. 2015 [40]. Kastien-Hilka. 2017 [41].

Assuming that disability weights are not cumulative,

thus those on ART with TB have the same disability

weight as someone with TB disease only.

The disability weight is a factor reflecting the

severity of disease.

Cost and resource use
Microscopy, mean (standard deviation) $6.30 ($1.34) Gamma Cunnama 2016 [42].

(Continued)
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NP) to observe the additive effects of the scenarios. Investments were modelled by altering

parameters at key stages in the patient pathway and how these will increase the count of utilisa-

tion that increases costs and affects outcomes. The cost of facilitating change through changing

behaviour, which we refer to as the transaction cost is shown in Fig 3.

Economic analyses

The cost-effectiveness of investment scenarios was estimated from the societal perspective,

which includes provider and patient-incurred costs. Disability adjusted life years (DALYs)

averted were estimated using model estimates of years of life lost (YLL) due to premature mor-

tality and years lived with disability (YLD). YLL were estimated based on progression through

the model, assuming an average life expectancy of 63 years and the mean age (38 years) of

patients in the trial [7, 34]. Disability weights from the 2010 Global Burden of Disease study

were attached to model states [52]. For people on ART with tuberculosis, we assumed the

Table 1. (Continued)

Definition Mean and stratification Distribution Comments. References are listed as name of first

author, year (Reference).

Xpert, mean (standard deviation) $16.90 ($6.10) Gamma Cunnama 2016 [42].

Sputum liquid culture, mean (standard

deviation)

$12.90 ($2.26) Gamma Cunnama 2016 [42].

Digital radiograph, mean (standard deviation) $15.17 ($7.74) Gamma Foster. Unpublished.

First-line drug sensitivity test, mean (standard

deviation)

$20.30 ($7.28) Gamma Cunnama 2016 [42].

Second-line drug sensitivity test, mean

(standard deviation)

$25.10 ($20.22) Gamma Cunnama 2016 [42].

Provider cost of clinic visit for initial diagnosis

and monitoring

$8.63 Fixed Vassall 2017 [43].

Provider cost of clinic visit for treatment $3.89 Fixed Vassall 2017 [43].

Patient cost of clinic visit $2.90 Fixed Foster 2015 [44].

Guardian cost per clinic visit $10.04 Fixed Foster 2015 [44].

Cost of caregiver per day $0.69 Fixed Foster 2015 [44].

Resource use along the diagnostic pathway Detailed input available from S1 Text. Gamma Estimated by disease progression. Reported in Vassall

2017 [43]. Foster 2015 [44].

Provider cost of drug sensitive TB treatment,

episode

$192.99 Fixed Estimated based on patient movements through care

observed in the trial. Reported in Vassall 2017 [43].

Foster 2015 [44].

Provider cost of multi-drug resistant TB

treatment, episode

$10 802.66 Fixed Estimated based on patient movements through care

observed in the trial. Reported in Vassall 2017 [43].

Foster 2015 [44].

Patient cost of drug sensitive TB treatment,

episode

Cost of accessing care associated $459.16; Time-dependent

functions

Foster 2015 [44].

Cost of illness $135.94

Patient cost of multi-drug resistant TB

treatment, episode

Cost of accessing care associated $3

592.27;

Time-dependent

functions

Foster 2015 [44].

Cost of illness $2 442.03

In the Table, a fixed distribution refers to a distribution one where no uncertainty interval is estimated in keeping with calibration practice in complex models.

Furthermore, IQR = interquartile range; TB = tuberculosis; MDR-TB = multi-drug resistant tuberculosis; Xpert = Xpert MTB/RIF; HIVpos = individuals HIV positive

not yet started on anti-retroviral therapy; HIVpos_TB = individuals HIV positive with tuberculosis; ART = individuals HIV positive started on anti-retroviral therapy;

ART_TB = individuals HIV positive on anti-retroviral therapy with tuberculosis.

https://doi.org/10.1371/journal.pone.0251547.t001
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Table 2. Summary of the investment scenarios modelled.

Investment Model implementation Parameter, events or

resource changes

Assumptions

Reduction in initial

LTFU (in Fig 1;

decision-point C and

E)

All patients with positive TB test

results start treatment within one

month of testing—simulating a

point-of-care or a track-and-trace

scenario with active follow-up of

people with a positive TB test

result. Synergies with investment

in a community health worker

programme.

ptxfpos = 1—pMort_m1 (stratified by

HIV and TB status)

Probability of starting

treatment after positive

(in month 1), from:

Monthly conditional probabilities

of starting treatment from ‘out of

care’ were estimated from the trial

in the base scenario (reported in

Table 1). In this investment

scenario, patients shift from

moving to the ‘out of care’ state if

not started on treatment within

one month, to the treatment state

immediately, thus probabilities of

starting treatment from ‘out of

care’ approximate zero. The

relative proportions of those

starting various treatment types is

kept the same as observed in the

trial.

The probability of starting treatment

from a positive test result was the

remainder of all patients in that state

after those who would die in that

month had been subtracted. The

mortality rate was stratified by HIV and

TB status.

HIVneg: 0.882 to 1;

HIVneg_TB: 0.882 to 1;

HIVpos: 0.802 to 1;

HIVpos_TB: 0.802 to 1;

ART: 0.944 to 1;

ART_TB: 0.944 to 1

Empirical treatment

from negative test

result (in Fig 1;

decision-point A)

The ability of healthcare workers

to correctly act based on

continued clinical symptoms, on

the same day as the results visit

(by giving TB treatment to those

with test negative TB expressed as

the sensitivity and specificity of

that decision). This was based on

the behaviour estimated from the

microscopy arm of the model

calibration and was applied to

behaviour after a negative Xpert

test result.

pnegpathfeg = 0 Probability of the

negative pathway after a

negative test result, from:

Given the differences in health

care worker behaviour after a

microscopy test compared to a

Xpert test result observed in the

XTEND trial, we use the

transition probabilities estimated

from the microscopy arm of the

trial [50, 51].

ptreatfneg = value estimated from

reported behaviour in the control arm

of the XTEND study [49], under the

assumption that behaviour observed

after the implementation will revert

back to pre-implementation levels.

HIVpos: 0.027 to 0.000

Assumed that all have at least one visit

to a public health clinic (and associated

costs) after a negative test result for

treatment initiation.

HIVpos_TB: 0.212 to

0.000

ART: 0.037 to 0.000

ART_TB: 0.217 to 0.000

Probability of starting

treatment after a

negative test result, from:

HIVneg: 0.002 to 0.040

HIVneg_TB:0.054 to

0.270

HIVpos: 0.009 to 0.180

HIVpos_TB: 0.072 to

0.360

ART: 0.003 to 0.060

ART_TB: 0.017 to 0.090

(Continued)
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same disability weight as for those with tuberculosis who are HIV negative. Costs and out-

comes were discounted at 3% per annum, and varied in the sensitivity analyses [53: 108–112].

Transaction costs are conceptualised as the value of resources that would support better

decision-making between agents. These costs are incurred during each decision-making inter-

action along the patient pathway (represented by blue dots in Fig 1). Changes in the optimal

investment strategy at a range of transaction costs are evaluated by plotting cost-effectiveness

acceptability frontiers (Fig 3) [54]. The optimal investment option is defined as the strategy

with the highest net monetary benefit at a given cost-effectiveness threshold and transaction

cost level.

Table 2. (Continued)

Investment Model implementation Parameter, events or

resource changes

Assumptions

Improvements in the

test-negative pathway

(in Fig 1 decision-

points B and D)

HIV-positive people with negative

test results get further

investigations (radiograph/

culture) for TB, and a proportion

are started on TB treatment,

simulating additional investment

in improving access to further

diagnostic tests.

ptreatfneg = 0 Probability of starting

treatment after negative

test result changes from:

Similar to the previous scenario,

we model a healthcare worker

behaviour change scenario based

on the difference in observed

behaviour between the

microscopy and Xpert arms of the

study. This scenario simulates a

situation where there is an

increase in the proportion of

patients who receive further

investigations after a negative test

result. Therefore, we reduced all

empirical treatment to 0 and all

eligible patients received a

radiograph as part of the negative

pathway.

pnegpathfneg = 1 (stratified by HIV

and TB status)

HIVneg: 0.002 to 0.000

treatfnegpath = 0.10 (no TB); 0.80 (with

TB)

HIVneg_TB:0.054 to

0.000

The probability of starting treatment is

shifted from following a negative test

result to the decision to order further

diagnostic tests. The probability of

starting treatment after the negative

pathway was 10% in those without TB,

and 80% in those with TB.

HIVpos: 0.009 to 0.000

Assumed that every person will

accumulate two visits to the public

clinic during the negative pathway, and

that each person getting further tests

will get at least one radiograph.

HIVpos_TB: 0.072 to

0.000

ART: 0.003 to 0.000

ART_TB: 0.017 to 0.000

Probability of the

negative pathway after a

negative test result

change from:

HIVpos: 0.041 to 0.900

HIVpos_TB: 0.041 to

0.900

ART: 0.073 to 0.900

ART_TB: 0.073 to 0.900

Probability of treatment

from negative pathway

changes from:

HIVpos: 0.027 to 0.100

HIVpos_TB: 0.212 to

0.800

ART: 0.037 to 0.100

ART_TB: 0.217 to 0.800

In the Table, the individual characteristics of the patients are labelled as HIVneg for people who are HIV negative and don’t have tuberculosis; HIVneg_TB for people

who are HIV negative and have been diagnosed with tuberculosis; HIVpos for people who are HIV positive and don’t have tuberculosis; HIVpos_TB for people who are

HIV positive and have been diagnosed with tuberculosis; ART represents the individuals who are HIV positive, on anti-retroviral therapy and don’t have tuberculosis;

and ART_TB represents the individuals who are HIV positive, on anti-retroviral therapy and have been diagnosed with tuberculosis.

https://doi.org/10.1371/journal.pone.0251547.t002
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Sensitivity and scenario analyses

The impact of model parameters changes on results was assessed through univariate sensitivity

analysis. Probabilistic uncertainty analyses, simulating 100 000 samples, were used to assess

the simultaneous effect of path and parameter uncertainty on the results [55].

Scenario analyses were used to explore how implementation may vary between contexts.

Given the set of interactions governing decision-making in the care pathway, some of which

would be harder to mediate through additional investment [56], an increase in the value of

supporting investments would not lead to proportional, linear improvements in outcomes

[57].

Ethics statement. The study was approved by the research ethics committees of the Uni-

versity of Cape Town (363/2011), University of the Witwatersrand (M110827), London School

of Hygiene & Tropical Medicine (6041), and the World Health Organization (RPC462). Health

department officials and facility managers provided permission to conduct the study in the

selected facilities and written informed consent was obtained from respondents.

Results

After parameterising the model with data from the trial, and validating to the observed rate of

TB treatment started and other secondary outcomes, we found that in order to achieve a good

fit of the model to the data, we needed to also consider the limitations of sputum-based tuber-

culosis diagnostic modalities [58]. Undiagnosed tuberculosis may be related to the site of infec-

tion (extra-pulmonary tuberculosis), and low bacillary load in the sample, as is common in

advanced HIV disease. During the model calibration, we therefore also added a parameter to

capture the prevalence of extra-pulmonary tuberculosis (EPTB), varied along with the positive

predictive value (PPV) and negative predictive value (NPV) to identify the best model fit. The

prevalence of TB in the cohort was estimated to be 13% (see S1 Text).

Costs, effectiveness, and cost-effectiveness analyses of the investment

scenarios

Table 3 presents the costs, effectiveness (deaths averted and DALYs averted), and cost-effec-

tiveness of investment scenarios, compared with the base case of Xpert as observed during the

trial. The uncertainty interval (UI) is shown in brackets. From the provider’s perspective, the

incremental cost-effectiveness ratios (ICERs) ranged between $17.42 and $39.70 per DALY

averted. We estimated a provider cost of tuberculosis services of $89.66 (UI: $87 - $92) per

symptomatic person tested using an Xpert-based diagnostic algorithm. The societal cost per

person was estimated to be $169.94 (UI: $167 - $173).

Reducing iLTFU by starting all individuals who test positive on treatment increased the

cost of treatment and patient cost of accessing care per patient by $2.76 and $8.25 respectively.

This scenario reduced time-to-treatment but has a comparatively small effect on the total

number of people starting treatment and on health outcomes. Assuming that 100% start treat-

ment in month one shifts the time-to-treatment started curve to the left, starting people on

treatment who would have never started as well as those who would have started within the

next couple of months. Since TB treatment does not instantly reduce mortality for patients

who have TB, the proportion of patients who start treatment in month one in the reduction in

iLTFU investment option only increases by 12% in those HIV negative, 10% in those HIV neg-

ative with TB, 20% in the HIV positive group, 7% in those HIV positive with TB, 6% in those

on ART, and 2% in those on ART with TB.
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Table 3. Costs (US$), outcomes and ICERs over three years (36 one-month cycles) in a cohort with an estimated TB prevalence of 13%.

Status quo and

five investment

scenarios

TB service costs per symptomatic

individual (US$)

Outcomes per symptomatic individual ICERs: compared against the status quo

In cohort

of 10 000,

true TB

treated

(range)

Provider costs Societal costs DALYs and DALYs

averted

Deaths and Deaths

averted

Provider

cost/

DALY

averted

(95% UI)

Societal

cost/

DALY

averted

(95% UI)

Provider

cost/ death

averted

(95% UI)

Societal

cost/

death

averted

(95% UI)

Total

(95%

UI)

Incr

change

from

base (%)

Total

(95%

UI)

Incr %

change

(range)

Total

DALYs

(95% UI)

Incr

DALYs

averted %

change

(range)

Total

deaths

(95%

UI)

Incr

deaths

averted %

change

(range)

(95% UI) (95% UI) (95% UI) (95% UI)

Xpert (status quo) 940 89.66 - - - 169.94 - - - 4.72 - - - 0.133 - - - - - - - - - - - - - - -

(920;

960)

(87;

92)

(167;

173)

(4.6; 4.8) (0.129;

0.136)

Xpert plus

reduction in initial

LTFU (iLTFU)

1010 92.42 2.76 178.19 8.25 4.56 0.16 0.128 0.005 17.42 51.86 601.40 1790.50

(C and E) (990;

1030)

(90;

95)

3% (175;

181)

5% (4.4; 4.7) 3% (0.125;

0.132)

4% (2.2; 117.6) (18.5;

271.0)

(75.1;

3806.7)

(644;

8774)

Xpert plus

treatment from

negative (TfN)

1140 110.78 21.12 256.36 86.42 4.04 0.68 0.115 0.018 31.40 128.45 1180.00 4826.60

(A and E) (1120;

1160)

(109;

113)

24% (253;

260)

51% (3.9; 4.1) 14% (0.112;

0.118)

14% (24.6; 40.5) (107.2;

157.0)

(905.9;

1567.3)

(3939.0;

6079.2)

Xpert plus

reduction in initial

LTFU, and

treatment from

negative

(iLTFU_TfN)

1210 113.55 23.89 264.60 94.66 3.88 0.84 0.110 0.023 28.73 113.82 1061.70 4205.70

(A, C and E) (1190;

1230)

(111;

116)

27% (261;

268)

56% (3.8; 4.0) 18% (0.107;

0.113)

17% (23.5; 35.3) (98.3;

133.3)

(853.3;

1333.3)

(3569.1;

5035.1)

Xpert plus

improvements in

the negative

pathway (NP)

1420 141.01 51.35 278.87 108.93 3.42 1.30 0.096 0.037 39.70 84.19 1387.70 2943.10

(B, D and E) (1390;

1450)

(139;

143)

57% (274;

284)

64% (3.3; 3.5) 28% (0.093;

0.099)

28% (35.2; 44.9) (75.0;

94.8)

(1225.6;

1576.9)

(2608.4;

3334.0)

Xpert plus

reduction in initial

LTFU, and

improvements in

the negative

pathway

(iLTFU_NP)

1480 142.99 53.33 285.97 116.03 3.28 1.44 0.092 0.041 37.02 80.55 1292.97 2813.00

(B, C, D and E) (1460;

1510)

(141;

145)

59% (281;

291)

68% (3.2; 3.4) 31% (0.089;

0.094)

31% (33.3; 41.3) (72.8;

89.4)

(1155.8;

1449.9)

(2527.7;

3139.4)

In the Table, Incr is the incremental change in costs or effectiveness from the base case. The base case in this analysis which represents the current status quo, Xpert as

observed in the intervention arm of the XTEND study; dominant: less costly and more effective; dominated: more costly and less effective; The 95% uncertainty interval

(UI) is shown in parentheses; ICER: Incremental cost-effectiveness ratio; DALYs: Disability Adjusted Life Years. In the scenario column, the capital letters refer to the

decision points upon which the investment scenario acts, as shown in Fig 1.

https://doi.org/10.1371/journal.pone.0251547.t003
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Supporting same-day clinical diagnosis of TB after a negative tuberculosis test result

increases the cost of the TB service per symptomatic person per episode by $21.12 due to the

increase in patients started on TB treatment, with likewise an increase in societal costs associ-

ated with accessing treatment of $86.42 per patient (Fig 2).

In contrast, improving access to further diagnostic tests following a negative test result

(negative pathway) increases diagnostic costs by $35 per patient due to the follow-on tests

ordered, with an increase in the cost of treatment (Fig 2). This scenario increases the patient

costs associated with accessing care (from $61 to $105 per patient) as patients make multiple

visits for follow-on diagnostic tests and results. In addition, delays in starting treatment

increase the cost of illness due to a loss of time and income.

For people with a negative Xpert test result, our analysis suggest that further testing (nega-

tive pathway), as conceptualised here, may be more effective at reducing mortality than empir-

ical treatment; however the provider costs per symptomatic individual are considerably higher

at $141.01 ($139 - $143) versus $110.78 ($109–$113) in the negative pathway compared against

treatment started following a clinical diagnosis. Similarly, societal costs are higher due to

increased diagnostic visits and delays in starting treatment increase the cost of illness which is

based on caregiver’s time as well as patient’s time unable to work.

Transaction cost analysis

Using a cost-effectiveness threshold that reflects recent decisions adopted by the South African

government (revealed willingness-to-pay) [59], we find that investments of up to $601 per

symptomatic individual would be cost-effective. It is therefore likely that considerable

Fig 2. Societal service-level costs (US$) per symptomatic person per episode. In the Figure, the cost of accessing

care (Access) includes out of pocket and time costs incurred by patients and caregivers when accessing care; the cost of

illness (Illness) includes the cost of caregiver’s time, the cost of patient’s time when unable to work as well as loan

interest, assets sold and the cost of nutritional supplements. Xpert referes to the Xpert baseline; iLTFU (Xpert plus

iLTFU) = additional investment to reduce pre-treatment loss-to-follow-up; TfN (Xpert plus TfN) = supporting clinical

diagnosis of tuberculosis after a negative test results; Np (Xpert plus NP) = improving access to further tuberculosis

diagnostic tests following a negative test result.

https://doi.org/10.1371/journal.pone.0251547.g002
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investments in strengthening supportive systems around TB diagnosis in South Africa would

be value for money.

Fig 3 presents the cost-effectiveness acceptability frontiers, which show the optimal pro-

vider investments at a range of transaction costs and cost-effectiveness thresholds. As

explained, transaction costs are modelled per transaction, and are conceptualized as the

resources needed to improve decision-making within each investment scenario. Assuming no

transaction costs, investing in reducing initial loss-to-follow up was the optimal investment if

the cost-effectiveness threshold was below $30/ DALY averted, but at higher thresholds, the

negative pathway was the optimal investment. As the investment cost per person per transac-

tion increased, empirical treatment became the optimal investment compared to the negative

pathway at lower cost-effectiveness thresholds. This is driven by a reduction in healthcare visits

when patients are started on treatment empirically.

Sensitivity analyses

Detailed results of the univariate sensitivity analyses are included in S1 Text, summarised in

Fig 4.

Intervention provider costs is dependent on population characteristics. For example, if

much of the population is HIV-positive not taking antiretroviral therapy, a higher proportion

with tuberculosis would test negative, leading to higher costs, though this would be mediated

Fig 3. Provider cost-effectiveness acceptability frontiers (CEAF) at various levels of transaction costs. Where iLTFU refers to Xpert plus a reduction

in initial loss to follow up scenario; TfN refers to the scenario modelling Xpert plus treatment from negative; Np refers to Xpert plus improvements in

the negative pathway. The cost-effectiveness acceptability frontier (CEAF) expressing the uncertainty around the cost-effectiveness of investments, by

showing which strategy is economically preferred at a range of cost-effectiveness thresholds (on the x-axis). The base case scenario for each of these

comparisons is Xpert MTB/RIF, as observed in the XTEND trial. The graph is a plot of the proportion of individual runs that would be cost-effective for

each intervention (y-axis) while restricting the options to only those that would be the most cost-effective (optimal) investment for at least one

individual, against a range of cost-effectiveness thresholds (x-axis). As the threshold increase, the preferred option changes, the switch point being where

the incremental cost-effectiveness ratio (ICER) value increases beyond the threshold [62]. The analysis is repeated at a range of transaction costs per

transaction, thereby varying the costs needed to be invested to facilitate systems level change in line with the investment strategy.

https://doi.org/10.1371/journal.pone.0251547.g003
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by the expansion of universal access to antiretroviral therapy. Similarly, the effectiveness of

these investments is sensitive to the health-seeking behaviours of patients and health system

characteristics, specifically whether patients return for their results, the availability of chest

radiographs and whether treatment is started after further diagnostic tests. The prevalence of

multi-drug resistant tuberculosis and the cost of multi-drug resistant tuberculosis treatment

was an important driver of costs and effectiveness of the overall results.

Discussion

Our analyses build on a global body of work evaluating the use of Xpert-based diagnostic path-

ways [4, 10, 15, 60–63] by presenting the cost-effectiveness of complementary investments to

strengthen the diagnostic pathway [64]. We explored how investments in health system to sup-

port the patient pathway may affect the resource use and outcomes associated with tuberculo-

sis diagnostics. Our findings suggest that it is unlikely that a single investment or technology

would dramatically improve the outcomes of symptomatic patients receiving a tuberculosis

diagnostic test; instead our results suggest that investments in various parts of the care pathway

could generate additional benefits, and, based on the transaction cost analysis, we show that

relatively high levels of investment in health systems strengthening may be cost-effective.

Fig 4. (A-C) Results from the univariate sensitivity analyses, showing the ten parameters with the greatest influence

on the (A) provider cost, (B) the societal costs, and the (C) effectiveness (DALYs) of the base case (Xpert). The full

results for these analyses are presented S1 Text. In each one-way analysis, one parameter was varied by a factor of 10

from the mean to produce the low and high estimates, with all other parameters kept constant. Where DALYs are

disability adjusted life years; Prov refers provider; and Soc is societal. DS treatment is drug-sensitive treatment. MDR

refers to multi-drug resistant tuberculosis.

https://doi.org/10.1371/journal.pone.0251547.g004
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When comparing across the care pathway (Table 2), our analysis finds that in a symptom-

atic cohort with 13% prevalence of tuberculosis, only minor reductions in mortality can be

achieved by improving initial pre-treatment loss to follow up, while much larger benefits can

be achieved by improving access to further tests after a negative tuberculosis test. This may be

explained, in part, by the higher mortality rates observed in people who are HIV-positive with

an initial negative tuberculosis test result.

Potential drivers of investment value

While the Xpert assay automates diagnostic processes and provides test results within two

hours, in South Africa, Xpert machines were placed at laboratories with results delivered to

health facilities in two days. Therefore, despite Xpert implementation reducing the turn-

around time of results, follow-up clinic visits by patients were still required [42]. The need to

improve the linkage of patients with their results has been highlighted as an important com-

ponent of better tuberculosis diagnosis, however our analysis suggests that comparatively

low gains in terms of mortality reduction would be achieved in such an investment scenar-

ios. This may be explained by lower mortality rates in those with positive sputum test results,

and that people-living-with-HIV who have high rates of tuberculosis-associated mortality

are less likely to have a positive sputum test result. While the mortality reduction is likely to

be modest, those with positive tuberculosis test results are potentially transmitting tubercu-

losis in communities, increasing the future burden of need at a population level [65]. These

results are somewhat supported by findings from studies that highlighted the challenges of

point-of-care Xpert testing at facilities in urban settings [66] and benefits in rural communi-

ties [67].

Clinical decision-making after a negative test result is important in understanding the cost-

effectiveness of new tuberculosis diagnostics, suggesting that greater awareness of tuberculosis

symptoms among health care workers may improve outcomes and be a cost-effective interven-

tion [10, 68, 69]. In Uganda, Hermans et al. (2017) found that tuberculosis treatment was initi-

ated based on clinical symptoms in 17% of patients for whom an Xpert test was requested [50].

In South Africa, an evaluation of tuberculosis programmatic data found that there was a

decline in the use of empirical tuberculosis treatment from 42% to 27% following the introduc-

tion of Xpert [51]. It is possible that the introduction of Xpert did not significantly reduce

tuberculosis-associated mortality due, in part, to a reduction in action, including follow-on

tests, after a negative test result [49]. Access to further tests such as chest radiography and

mycobacterial culture of sputum after a negative result is dependent on the availability of chest

radiography in close proximity to the health facility, how healthcare workers use these tests, as

well as access barriers to patients [70–72]. Our analysis suggests that assumptions of how

quickly tuberculosis treatment reduces mortality rates is a key determinant of the effectiveness

of this strategy.

Investing in health systems strengthening

While it is not possible to say whether an investment scenario is cost-effective without consen-

sus on a cost-effectiveness threshold in South Africa, we find that investing in strengthening

health systems to support the tuberculosis diagnostic algorithm is likely to be a high value

investment. The outcomes of these investments are also likely to influence other disease pro-

grams and sectors [73]. We do not include these spill over benefits or costs in our analysis, and

thus our estimates are conservative. Empirical work has highlighted the importance of going

beyond investing in assets and technology to invest in developing agency and governance (the

software capacities of health systems) [74]. Those investments are highly contextual and

PLOS ONE Cost-effectiveness of strengthening health systems to support TB diagnosis in South Africa

PLOS ONE | https://doi.org/10.1371/journal.pone.0251547 May 14, 2021 15 / 21

https://doi.org/10.1371/journal.pone.0251547


difficult to cost, so while our approach highlights to decision makers the resource envelopes

required, more work is needed to develop and iteratively assess context-specific investment

strategies. In-depth qualitative work to understand the barriers and facilitators of health care

workers’ implementation of diagnostic guidelines would fill some of this gap.

The following limitations should be considered when interpreting our findings. Firstly, we

did not model the effect of the various scenarios on the tuberculosis epidemic at a population

level. While the implementation of Xpert primarily resulted in an increased identification of

smear-negative tuberculosis, currently thought not to be a major driver of transmission, not

including transmission in the analysis is likely to underestimate the relative benefit of reducing

pre-treatment LTFU at a population level [65, 75, 76]. Secondly, while we are modelling sce-

narios and benefits in a nuanced way, the relationship between health system structures, health

care worker -, and patient behaviour is complex and while one can observe patterns, predic-

tions will be limited by our understanding of the mechanisms driving these patterns. Thirdly,

any investment in the health system will be likely to have an impact on other associated ser-

vices (externalities), the benefits of which we did not include in our analysis [42]. Lastly, while

our model includes a pathway for patients to initiate multi-drug resistant tuberculosis treat-

ment if diagnosed, and incur the associated costs, we do not attempt to estimate the true preva-

lence of multi-drug resistant tuberculosis or what effect the investments may have on the

epidemic. In the analysis of the negative pathway, therefore, the model may be underestimat-

ing the effect of incorrectly starting an individual on drug-sensitive tuberculosis. Studies fol-

lowing the roll-out of Xpert have found that barriers to initiating multi-drug resistant

tuberculosis persisted and that the time-to-appropriate-treatment was only slightly reduced [8,

77].

In conclusion, our findings suggest that within the context of a high tuberculosis prevalence

setting, with a well-developed laboratory infrastructure, the implementation of new tuberculo-

sis diagnostics should be accompanied by additional investments in the health system. Current

international policy is to substantially expand and intensify tuberculosis detection, yet if this is

not accompanied by investments to support decision-making after a negative test result, it is

unlikely that these efforts alone will modify the tuberculosis epidemic.
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