365 research outputs found

    Study of Optimal Perimetric Testing In Children (OPTIC): Feasibility, reliability and repeatability of perimetry in children

    Get PDF
    Purpose: To investigate feasibility, reliability and repeatability of perimetry in children. Methods: A prospective, observational study recruiting 154 children aged 5-15 years, without an ophthalmic condition that affects the visual field (controls), identified consecutively between May 2012 and November 2013 from hospital eye clinics. Perimetry was undertaken in a single sitting, with standardised protocols, in a randomised order using the Humphrey static (SITA 24-2 FAST), Goldmann and Octopus kinetic perimeters. Data collected included test duration, subjective experience and test quality (incorporating examiner ratings on comprehension of instructions, fatigue, response to visual and auditory stimuli, concentration and co-operation) to assess feasibility and reliability. Testing was repeated within 6 months to assess repeatability. Results: Overall feasibility was very high (Goldmann=96.1%, Octopus=89% and Humphrey=100% completed the tests). Examiner rated reliability was ‘good’ in 125 (81.2%) children for Goldmann, 100 (64.9%) for Octopus and 98 (63.6%) for Humphrey perimetry. Goldmann perimetry was the most reliable method in children under 9 years of age. Reliability improved with increasing age (multinomial logistic regression (Goldmann, Octopus and Humphrey), p<0.001). No significant differences were found for any of the three test strategies when examining initial and follow-up data outputs (Bland-Altman plots, n=43), suggesting good test repeatability, although the sample size may preclude detection of a small learning effect. Conclusions: Feasibility and reliability of formal perimetry in children improves with age. By the age of 9 years, all the strategies used here were highly feasible and reliable. Clinical assessment of the visual field is achievable in children as young as 5 years, and should be considered where visual field loss is suspected. Since Goldmann perimetry is the most effective strategy in children aged 5-8 years and this perimeter is no longer available, further research is required on a suitable alternative for this age group

    Frictionless bead packs have macroscopic friction, but no dilatancy

    Get PDF
    The statement of the title is shown by numerical simulation of homogeneously sheared packings of frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady &#64258;ows at constant shear rate &#947; in the limit of small &#947; and static approaches, in which packings are equilibrated under growing deviator stresses. The internal friction angle &#981;, equal to 5.76 ±\pm 0.22 degrees in simple shear, is independent on the average pressure P in the rigid limit. It is shown to stem from the ability of stable frictionless contact networks to form stress-induced anisotropic fabrics. No enduring strain localization is observed. Dissipation at the macroscopic level results from repeated network rearrangements, like the e&#64256;ective friction of a frictionless slider on a bumpy surface. Solid fraction &#934; remains equal to the random close packing value &#8771; 0.64 in slowly or statically sheared systems. Fluctuations of stresses and volume are observed to regress in the large system limit, and we conclude that the same friction law for simple shear applies in the large psystem limit if normal stress or density is externally controlled. De&#64257;ning the inertia number as I = &#947; m/(aP), with m the grain mass and a its diameter, both internal friction coe&#64259;cient μ\mu&#8727; = tan &#981; and volume 1/&#934; increase as powers of I in the quasistatic limit of vanishing I, in which all mechanical properties are determined by contact network geometry. The microstructure of the sheared material is characterized with a suitable parametrization of the fabric tensor and measurements of connectivity and coordination numbers associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v

    Study of Optimal Perimetric Testing In Children (OPTIC): Development and feasibility of the kinetic perimetry reliability measure (KPRM)

    Get PDF
    INTRODUCTION: Interpretation of perimetric findings, particularly in children, relies on accurate assessment of test reliability, yet no objective measures of reliability exist for kinetic perimetry. We developed the kinetic perimetry reliability measure (KPRM), a quantitative measure of perimetric test reproducibility/reliability and report here its feasibility and association with subjective assessment of reliability. METHODS: Children aged 5-15 years, without an ophthalmic condition that affects the visual field, were recruited from Moorfields Eye Hospital and underwent Goldmann perimetry as part of a wider research programme on perimetry in children. Subjects were tested with two isopters and the blind spot was plotted, followed by a KPRM. Test reliability was also scored qualitatively using our examiner-based assessment of reliability (EBAR) scoring system, which standardises the conventional clinical approach to assessing test quality. The relationship between KPRM and EBAR was examined to explore the use of KPRM in assessing reliability of kinetic fields. RESULTS: A total of 103 children (median age 8.9 years; IQR: 7.1 to 11.8 years) underwent Goldmann perimetry with KPRM and EBAR scoring. A KPRM was achieved by all children. KPRM values increased with reducing test quality (Kruskal-Wallis, p=0.005), indicating greater testretest variability, and reduced with age (linear regression, p=0.015). One of 103 children (0.97%) demonstrated discordance between EBAR and KPRM. CONCLUSION: KPRM and EBAR are distinct but complementary approaches. Though scores show excellent agreement, KPRM is able to quantify withintest variability, providing data not captured by subjective assessment. Thus, we suggest combining KPRM with EBAR to aid interpretation of kinetic perimetry test reliability in children

    Internal states of model isotropic granular packings. III. Elastic properties

    Get PDF
    In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to load intensity. The shear modulus, in poorly coordinated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume. The elastic range extends to small strain intervals, in agreement with experimental observations. The origins of nonelastic response are discussed. We conclude that elastic moduli provide access to mechanically important information about coordination numbers, which escape direct measurement techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page

    Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks

    Get PDF
    This is the first paper of a series of three, reporting on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. Frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, slower processes inducing traces of crystallization, and exhibit specific properties directly related to isostaticity of the force-carrying structure. The different structures of frictional packings assembled by various methods cannot be classified by the sole density. While lubricated systems approach RCP densities and coordination number z^*~=6 on the backbone in the rigid limit, an idealized "vibration" procedure results in equally dense configurations with z^*~=4.5. Near neighbor correlations on various scales are computed and compared to available laboratory data, although z^* values remain experimentally inaccessible. Low coordination packings have many rattlers (more than 10% of the grains carry no force), which should be accounted for on studying position correlations, and a small proportion of harmless "floppy modes" associated with divalent grains. Frictional packings, however slowly assembled under low pressure, retain a finite level of force indeterminacy, except in the limit of infinite friction.Comment: 29 pages. Published in Physical Review

    Hydroxyapatite coatings on cement paste as barriers against radiological contamination

    Get PDF
    A novel method for precipitating hydroxyapatite (HAp) onto cement paste is investigated for protecting concrete infrastructure from radiological contamination. Legacy nuclear sites contain large volumes of contaminated concrete and are expensive and dangerous to decommission. One solution is to ‘design for decommissioning’ by confining contaminants to a thin layer. Current layering methods, including paints or films, offer poor durability over plant lifespans. Here, we present a mineral-HAp-coated cement, which innovatively serves as a barrier layer to radioactive contaminants (e.g. Sr, U). HAp is shown to directly mineralise onto a cement paste block in a layer several microns thick via a two-step process: first, applying a silica-based scaffold onto a cement paste block; and second, soaking the resulting block in a PO4-enriched Ringer’s solution. Strontium ingression was tested on coated and uncoated cement paste (~ 40 × 40 × 40mm cement, 450 mL, 1000 mg L− 1 Sr) for a period of 1-week. While both coated and uncoated samples reduced the solution concentration of Sr by half, Sr was held within the HAp layer of coated cement paste and was not observed within the cement matrix. In the uncoated samples, Sr had penetrated further into the block. Further studies aim to characterise HAp before and after exposure to a range of radioactive contaminants and to develop a method for mechanical layer separation

    Identification of a candidate gene for astigmatism

    Get PDF
    PURPOSE. Astigmatism is a common refractive error that reduces vision, where the curvature and refractive power of the cornea in one meridian are less than those of the perpendicular axis. It is a complex trait likely to be influenced by both genetic and environmental factors. Twin studies of astigmatism have found approximately 60% of phenotypic variance is explained by genetic factors. This study aimed to identify susceptibility loci for astigmatism

    Associations with photoreceptor thickness measures in the UK Biobank.

    Get PDF
    Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40-69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness
    • …
    corecore