95 research outputs found

    Acoustic, thermal and flow processes in a water filled nanoporous glasses by time-resolved optical spectroscopy

    Full text link
    We present heterodyne detected transient grating measurements on water filled Vycor 7930 in the range of temperature 20 - 90 degrees C. This experimental investigation enables to measure the acoustic propagation, the average density variation due the liquid flow and the thermal diffusion in this water filled nano-porous material. The data have been analyzed with the model of Pecker and Deresiewicz which is an extension of Biot model to account for the thermal effects. In the whole temperature range the data are qualitatively described by this hydrodynamic model that enables a meaningful insight of the different dynamic phenomena. The data analysis proves that the signal in the intermediate and long time-scale can be mainly addressed to the water dynamics inside the pores. We proved the existence of a peculiar interplay between the mass and the heat transport that produces a flow and back-flow process inside the nano-pores. During this process the solid and liquid dynamics have opposite phase as predicted by the Biot theory for the slow diffusive wave. Nevertheless, our experimental results confirm that transport of elastic energy (i.e. acoustic propagation), heat (i.e. thermal diffusion) and mass (i.e. liquid flow) in a liquid filled porous glass can be described according to hydrodynamic laws in spite of nanometric dimension of the pores. The data fitting, based on the hydrodynamic model, enables the extraction of several parameters of the water-Vycor system, even if some discrepancies appear when they are compared with values reported in the literature.Comment: 32 pages, 11 figure

    Fast Analysis of Stop-Band FSS Integrated with Phased Array Antennas

    Get PDF
    This paper presents a method for the efficient analysis of multilayer frequency selective surfaces (FSSs) integrated with phased array of open-ended waveguides. The method is based on the assumption that all the periodic surfaces are arranged on the same spatial lattice (of arbitrary shape). The whole structure is represented as an equivalent multi-mode transmission line network, where each interface is characterized by an equivalent Generalized Scattering Matrix (GSM), computed through a fullwave analysis. To reduce the computational effort of the analysis a fast adaptive interpolation algorithm for the scattering matrix entries is included

    Transient grating experiments on CCl4-filled porous glasses

    Get PDF

    One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers

    Get PDF
    We present a very simple method to realize a one-dimensional photonic crystal (1D PC), consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG), a surface emitting distributed feedback (DFB) laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported

    tuning optical properties of opal photonic crystals by structural defects engineering

    Get PDF
    We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 microns doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T), and photoluminescence spectroscopy (PL). Clear evidence of defect states were observed in T and R spectra, which allow the light to propagate for selected frequencies within the pseudogap (stop band)

    Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti

    Get PDF
    High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs

    Acetylacetone photodynamics at a seeded freeelectron laser

    Get PDF
    The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft Xray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation–deexcitation and fragmentation in pump-probe experiments on the 50- femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail

    Ultrafast resonant interatomic coulombic decay induced by quantum fluid dynamics

    Get PDF
    Interatomic processes play a crucial role in weakly bound complexes exposed to ionizing radiation; therefore, gaining a thorough understanding of their efficiency is of fundamental importance. Here, we directly measure the timescale of interatomic Coulombic decay (ICD) in resonantly excited helium nanodroplets using a high-resolution, tunable, extreme ultraviolet free-electron laser. Over an extensive range of droplet sizes and laser intensities, we discover the decay to be surprisingly fast, with decay times as short as 400 fs, nearly independent of the density of the excited states. Using a combination of time- dependent density functional theory and ab initio quantum chemistry calculations, we elucidate the mechanisms of this ultrafast decay process, where pairs of excited helium atoms in one droplet strongly attract each other and form merging void bubbles, which drastically accelerates ICD

    Tunability experiments at the FERMI@Elettra free-electron laser

    Get PDF
    FERMI@Elettra is a free electron-laser (FEL)-based user facility that, after two years of commissioning, started preliminary users' dedicated runs in 2011. At variance with other FEL user facilities, FERMI@Elettra has been designed to deliver improved spectral stability and longitudinal coherence. The adopted scheme, which uses an external laser to initiate the FEL process, has been demonstrated to be capable of generating FEL pulses close to the Fourier transform limit. We report on the first instance of FEL wavelength tuning, both in a narrow and in a large spectral range (fine- and coarse-tuning). We also report on two different experiments that have been performed exploiting such FEL tuning. We used fine-tuning to scan across the 1s–4p resonance in He atoms, at ≈23.74 eV (52.2 nm), detecting both UV–visible fluorescence (4p–2s, 400 nm) and EUV fluorescence (4p–1s, 52.2 nm). We used coarse-tuning to scan the M4,5 absorption edge of Ge (∌29.5 eV) in the wavelength region 30–60 nm, measured in transmission geometry with a thermopile positioned on the rear side of a Ge thin foil
    • 

    corecore