5 research outputs found

    Conformation of the anterior segment in human myopia.

    Get PDF
    PURPOSE: Topography of the in vivo anterior segment is of relevance in understanding its role in myopia and in the development of ocular surgical procedures. Using 3D magnetic resonance (MR) images of the human eye, regional variations in surface area (SA) and bulbosity of four anterior segment regions were investigated in association with refractive status (Rx), axial length (AL) and total ocular volume (OV). METHODS: T2-weighted ocular MR images from 43 adults aged 18-40 years (mean ± SD; 28.65 ± 6.20) comprising 20 non-myopes (≥-0.50) 0.57 ± 1.38 and 23 myopes (<-0.50) -6.37 ± 4.23 MSE (D) were collected. 2D representations of each quadrant (superior-temporal [ST], superior-nasal [SN], inferior-temporal [IT] and inferior-nasal [IN]) of the anterior section (3.5-9 mm) were fitted with second-order polynomials. Polynomials were integrated and rotated about the x-axis to generate SA; dividing the SA by 4 provided relative quadrantial SA. The x2 coefficient provides indices of bulbosity. OV was derived from the 3D MRI scans. Rx and AL were measured using cycloplegic autorefraction and the Zeiss IOLMaster, respectively. One- and two-way repeated-measures ANCOVAs tested differences in SA and bulbosity for Rx, gender, ethnicity and age. Pearson's correlation coefficient tested the relationship between MRI-derived metrics and biometry. RESULTS: Significant differences in SA were observed between quadrants (p < 0.001) with differences between ST versus IN, IN versus IT and SN versus IT. An interaction effect (p = 0.01) for Rx suggested smaller temporal (ST and IT) and larger nasal (SN and IN) SA in myopes. AL and myopic Rx were negative correlated (p < 0.05) with SA at IN, SN and IT. OV was significantly associated with SA at ST. Bulbosity showed no regional differences nor an effect of AL or Rx. CONCLUSION: Significant regional variation in SA exists across the anterior segment that is modulated by Rx and AL. It is unclear whether these structural characteristics are a precursor or consequence of myopia and may warrant investigation when developing biomechanical interventions

    Comparison of subjective and objective methods to determine the retinal arterio-venous ratio using fundus photography

    Get PDF
    Purpose: To assess the inter and intra observer variability of subjective grading of the retinal arterio-venous ratio (AVR) using a visual grading and to compare the subjectively derived grades to an objective method using a semi-automated computer program. Methods: Following intraocular pressure and blood pressure measurements all subjects underwent dilated fundus photography. 86 monochromatic retinal images with the optic nerve head centred (52 healthy volunteers) were obtained using a Zeiss FF450+ fundus camera. Arterio-venous ratios (AVR), central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were calculated on three separate occasions by one single observer semi-automatically using the software VesselMap (ImedosSystems, Jena, Germany). Following the automated grading, three examiners graded the AVR visually on three separate occasions in order to assess their agreement. Results: Reproducibility of the semi-automatic parameters was excellent (ICCs: 0.97 (CRAE); 0.985 (CRVE) and 0.952 (AVR)). However, visual grading of AVR showed inter grader differences as well as discrepancies between subjectively derived and objectively calculated AVR (all p < 0.000001). Conclusion: Grader education and experience leads to inter-grader differences but more importantly, subjective grading is not capable to pick up subtle differences across healthy individuals and does not represent true AVR when compared with an objective assessment method. Technology advancements mean we no longer rely on opthalmoscopic evaluation but can capture and store fundus images with retinal cameras, enabling us to measure vessel calibre more accurately compared to visual estimation; hence it should be integrated in optometric practise for improved accuracy and reliability of clinical assessments of retinal vessel calibres

    Quantification of Visual Field Loss in Age-Related Macular Degeneration

    Get PDF
    Background An evaluation of standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP) for the central 10–2 visual field test procedure in patients with age-related macular degeneration (AMD) is presented in order to determine methods of quantifying the central sensitivity loss in patients at various stages of AMD. Methods 10–2 SAP and SWAP Humphrey visual fields and stereoscopic fundus photographs were collected in 27 eyes of 27 patients with AMD and 22 eyes of 22 normal subjects. Results Mean Deviation and Pattern Standard Deviation (PSD) varied significantly with stage of disease in SAP (both p<0.001) and SWAP (both p<0.001), but post hoc analysis revealed overlap of functional values among stages. In SWAP, indices of focal loss were more sensitive to detecting differences in AMD from normal. SWAP defects were greater in depth and area than those in SAP. Central sensitivity (within 1°) changed by −3.9 and −4.9 dB per stage in SAP and SWAP, respectively. Based on defect maps, an AMD Severity Index was derived. Conclusions Global indices of focal loss were more sensitive to detecting early stage AMD from normal. The SWAP sensitivity decline with advancing stage of AMD was greater than in SAP. A new AMD Severity Index quantifies visual field defects on a continuous scale. Although not all patients are suitable for SWAP examinations, it is of value as a tool in research studies of visual loss in AMD

    Comparative quantification of focal and diffuse visual field loss by the SPARK Precision threshold algorithm and SITA

    No full text
    PURPOSE: The aims of this paper were to examine focal and diffuse visual field loss in terms of threshold agreement between the widely used SITA Standard Humphrey Field Analyser (HFA) threshold algorithm with the SPARK Precision algorithm (Oculus Twinfield 2). METHODS: A total of 39 treated glaucoma patients (34 primary open angle and 5 primary angle closure glaucoma) and 31 cataract patients without glaucoma were tested in succession with the Oculus Twinfield 2 (Oculus Optikgeräte GmbH, Wetzlar, Germany) using the SPARK Precision algorithm and with the HFA 3 (Carl Zeiss Meditec, Dublin, CA) using the 30–2 SITA Standard algorithm. RESULTS: SPARK Precision required around half the testing time of SITA Standard. There was a good correlation between the MS of the two threshold algorithms but MD and PSD were significantly less severe with SPARK Precision in both glaucoma (focal field loss) and cataract (diffuse field loss) groups (p < 0.001). There was poor agreement for all global indices (MS, MD and PSD) between the two algorithms and there was a significant proportional bias of MD in the glaucoma group and PSD in both glaucoma and cataract groups. The pointwise sensitivity analysis yielded higher threshold estimates in SPARK Precision than in SITA Standard in the nasal field. Classification of glaucoma severity using AGIS was significantly lower with SPARK Precision compared to SITA Standard (p < 0.001). CONCLUSION: SITA renders deeper defects than SPARK. Compared to the SITA Standard threshold algorithm, SPARK Precision cannot quantify early glaucomatous field loss. This may be due to the mathematical linear interpolation of threshold sensitivity or deeper scotomas due to the plateau effect caused by the reduced dynamic range of the Twinfield 2 perimeter. Although not of clinical significance in early glaucoma, the plateau effect may hinder the long-term follow-up of patients during disease progression
    corecore