18 research outputs found

    Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens

    Get PDF
    Nano-TiO2 is immunotoxic to fish and reduces the bactericidal function of fish neutrophils. Here, fathead minnows (Pimephales promelas) were exposed to low and high environmentally relevant concentration of nano-TiO2 (2 ng g−1 and 10 μg g−1 body weight, respectively), and were challenged with common fish bacterial pathogens, Aeromonas hydrophila or Edwardsiella ictaluri. Pre-exposure to nano-TiO2 significantly increased fish mortality during bacterial challenge. Nano-TiO2 concentrated in the kidney and spleen. Phagocytosis assay demonstrated that nano-TiO2 has the ability to diminish neutrophil phagocytosis of A. hydrophila. Fish injected with TiO2 nanoparticles displayed significant histopathology when compared to control fish. The interplay between nanoparticle exposure, immune system, histopathology, and infectious disease pathogenesis in any animal model has not been described before. By modulating fish immune responses and interfering with resistance to bacterial pathogens, manufactured nano-TiO2 has the potential to affect fish survival in a disease outbreak

    Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America

    Get PDF
    Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants

    Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens

    Get PDF
    Nano-TiO2 is immunotoxic to fish and reduces the bactericidal function of fish neutrophils. Here, fathead minnows (Pimephales promelas) were exposed to low and high environmentally relevant concentration of nano-TiO2 (2 ng g−1 and 10 μg g−1 body weight, respectively), and were challenged with common fish bacterial pathogens, Aeromonas hydrophila or Edwardsiella ictaluri. Pre-exposure to nano-TiO2 significantly increased fish mortality during bacterial challenge. Nano-TiO2 concentrated in the kidney and spleen. Phagocytosis assay demonstrated that nano-TiO2 has the ability to diminish neutrophil phagocytosis of A. hydrophila. Fish injected with TiO2 nanoparticles displayed significant histopathology when compared to control fish. The interplay between nanoparticle exposure, immune system, histopathology, and infectious disease pathogenesis in any animal model has not been described before. By modulating fish immune responses and interfering with resistance to bacterial pathogens, manufactured nano-TiO2 has the potential to affect fish survival in a disease outbreak.This article is published as Jovanović, Boris, Elizabeth M. Whitley, Kayoko Kimura, Adam Crumpton, and Dušan Palić. "Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens." Environmental pollution 203 (2015): 153-164. doi: 10.1016/j.envpol.2015.04.003. </p

    Multiple reassortment between pandemic (H1N1) 2009 and endemic influenza viruses in pigs, United States.

    No full text
    As a result of human-to-pig transmission, pandemic influenza A (H1N1) 2009 virus was detected in pigs soon after it emerged in humans. In the United States, this transmission was quickly followed by multiple reassortment between the pandemic virus and endemic swine viruses. Nine reassortant viruses representing 7 genotypes were detected in commercial pig farms in the United States. Field observations suggested that the newly described reassortant viruses did not differ substantially from pandemic (H1N1) 2009 or endemic strains in their ability to cause disease. Comparable growth properties of reassortant and endemic viruses in vitro supported these observations; similarly, a representative reassortant virus replicated in ferrets to the same extent as did pandemic (H1N1) 2009 and endemic swine virus. These novel reassortant viruses highlight the increasing complexity of influenza viruses within pig populations and the frequency at which viral diversification occurs in this ecologically important viral reservoir.As a result of human-to-pig transmission, pandemic influenza A (H1N1) 2009 virus was detected in pigs soon after it emerged in humans. In the United States, this transmission was quickly followed by multiple reassortment between the pandemic virus and endemic swine viruses. Nine reassortant viruses representing 7 genotypes were detected in commercial pig farms in the United States. Field observations suggested that the newly described reassortant viruses did not differ substantially from pandemic (H1N1) 2009 or endemic strains in their ability to cause disease. Comparable growth properties of reassortant and endemic viruses in vitro supported these observations; similarly, a representative reassortant virus replicated in ferrets to the same extent as did pandemic (H1N1) 2009 and endemic swine virus. These novel reassortant viruses highlight the increasing complexity of influenza viruses within pig populations and the frequency at which viral diversification occurs in this ecologically important viral reservoir

    Geochemical reconstructions of Southern Ocean pH and temperature over the last glacial cycle (thesis data 1)

    No full text
    Research data underpinning the PhD thesis of J. Crumpton-Banks (dataset 1 of 2). The dataset consists of the following: - .txt ReadMe file containing further information. - .txt file containing ICPMS data for dissolution foraminifera (can be opened with any text editor). - .zip files containing LA-ICPMS traces of foraminifera from dissolution experiments ("diss-exps") and several downcore intervals of sediment core PS1506 ("PS1506"). Data format is .txt and these files can be opened with any text editor. - .zip file containing SEM images of downcore foraminifera from sediment core PS1506 and experimentally dissolved foraminifera from the same core (.bmp or .tiff). See ReadMe file for more information on opening files. The data files are embargoed until 23/06/202

    Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America

    No full text
    Abstract Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants

    Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs

    No full text
    Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine influenza viruses from 1979-1983, 1984-1987 and 1988-1992 were reconstructed and characterized. Glycan-binding analyses showed stepwise changes in the haemagglutinin receptor-binding specificity of the EA swine influenza viruses-that is, from recognition of both alpha 2,3- and alpha 2,6-linked sialosides to recognition of alpha 2,6-linked sialosides only; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein, which have been fixed since 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979-1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jumps through strategic coordination of surveillance and risk assessment activities
    corecore