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a b s t r a c t

Nano-TiO2 is immunotoxic to fish and reduces the bactericidal function of fish neutrophils. Here, fathead
minnows (Pimephales promelas) were exposed to low and high environmentally relevant concentration
of nano-TiO2 (2 ng g�1 and 10 mg g�1 body weight, respectively), and were challenged with common fish
bacterial pathogens, Aeromonas hydrophila or Edwardsiella ictaluri. Pre-exposure to nano-TiO2 signifi-
cantly increased fish mortality during bacterial challenge. Nano-TiO2 concentrated in the kidney and
spleen. Phagocytosis assay demonstrated that nano-TiO2 has the ability to diminish neutrophil phago-
cytosis of A. hydrophila. Fish injected with TiO2 nanoparticles displayed significant histopathology when
compared to control fish. The interplay between nanoparticle exposure, immune system, histopathology,
and infectious disease pathogenesis in any animal model has not been described before. By modulating
fish immune responses and interfering with resistance to bacterial pathogens, manufactured nano-TiO2

has the potential to affect fish survival in a disease outbreak.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

From 1916 to 2011, an estimated 165,050,000 metric tonnes of
titanium dioxide (TiO2) pigment (nano and bulk combined) were
produced worldwide (Jovanovi�c, 2015). Nano-TiO2 is used as a
constituent in personal, household, and food products. As an
ingredient in food products nano-TiO2 has an estimated human
consumption of 1 mg kg�1 body weight per day (Weir et al., 2012).
Nano-TiO2 is also considered as an additive of drinking water in
water treatment plants in a protocol for the removal of arsenic from
water (EPA., 2010). The most frequent predicted concentration of
nano-TiO2 in surface water is 21 ng L�1 (Gottschalk et al., 2009),
while the highest potential concentration is 16 mg L�1 (Mueller and
Nowack, 2008). The nano-TiO2 concentration of waste water
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effluent is documented in the mg L�1 range (Gottschalk et al., 2009;
Kiser et al., 2009; Westerhoff et al., 2011). However, in urban runoff
this concentration can be as high as 0.6 mg L�1 (Kaegi et al., 2008),
and in raw sewage up to 3 mg L�1 of nano-TiO2 has been detected
(Kiser et al., 2009; Westerhoff et al., 2011). Nano-TiO2 can be
absorbed by the gills, skin, and intestine of fish, although the
highest potential uptake is through diet (Handy et al., 2008). The
experiments with perfused intestines of fish demonstrated TiO2
uptake across the intestine both for the nano-TiO2 and its bulk
counterpart with average particle aggregates diameter of up to
1124 ± 331 nm (Al-Jubory and Handy, 2013). Although nano-TiO2 is
classified as a non-bioaccumulative substance in the fish embryos
with the bioconcentration factor (BCF) < 100 (L�opez-Serrano Oliver
et al., in press), it is still present in the juvenile and adult fish body
upon exposure (Ates et al., 2013; Fouqueray et al., 2013) with BCF of
181 (Zhu et al., 2010). Another studywith adult fish determined BCF
in the range 600e700, indicating possible increase of risk (Zhang
et al., 2006). Since nano-TiO2 can be transferred via the trophic
food chain to fish (Fouqueray et al., 2013; Zhu et al., 2010), and
although observed biomagnification factor is < 1, this suggests that
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the fish can internalize nano-TiO2 on a daily basis through diet
leading to chronic exposure (Zhu et al., 2010).

Nano-TiO2 has a strong bactericidal effect and can kill fish
pathogens in vitro (Cheng et al., 2008, 2009). Therefore, addition of
nano-TiO2 to the water of fish farms has been recommended in
order to prevent or mitigate bacterial disease outbreaks (Cheng
et al., 2008). However, methods that are successfully used for
bacterial killing in vitro are frequently not efficient when applied to
in vivo bacterial killing, due to the differences in the intracellular
environment and the specific antibacterial function of phagocytic
cells (Segal, 2005). It was recently demonstrated that nano-TiO2
acts as a strong immunomodulator of fish neutrophil function
(Jovanovi�c et al., 2011). Cell-mediated immunity and the phagocytic
cells are the primary targets of nano-TiO2 immunotoxicity in
aquatic animals. Immunotoxicity is manifested through lysosomal
destabilization, frustrated phagocytosis, and change in function of
the phagocytic cells (Jovanovi�c and Pali�c, 2012).

Aeromonas hydrophila is a Gram-negative motile rod and one of
the most important bacterial pathogens of aquatic animals in
temperate waters (Angka, 1990; Esteve et al., 1993). A. hydrophila
infection causes a systemic disease resulting in dermal ulceration,
tail or fin rot, ocular ulceration, and erythrodermatitis, which leads
to the descriptive disease appellations of “hemorrhagic septi-
cemia”, “red sore disease”, “red rot disease”, and “scale protrusion
disease”, among others (Cipriano, 2001). In the acute form of dis-
ease, rapid septicemia is the most common cause of mortality
(Cipriano, 2001). Pathogenic mechanisms include the production of
a cytotoxic enterotoxin, a type 3 secretion system, hemolysins, and
an exotoxin (Grim et al., 2013), along with cytotoxic and haemolytic
activities of the bacterial extracellular polysaccharides (Rodríguez
et al., 2008), which collectively have lethal effects on renal
tubular epithelium, precipitating acute renal failure. It is important
to note that A. hydrophila is a member of the normal intestinal flora
of healthy fish (Trust et al., 1979). The presence of the bacteria itself
in fish does not indicate the disease per se and stress is often
considered to be a contributing factor in disease outbreaks caused
by A. hydrophila (Cipriano, 2001).

Edwardsiella ictaluri is a Gram-negative rod from Enter-
obacteriaceae family. It is the causative agent of Enteric Septicemia
Disease that affects a variety of fish species (Baxa et al., 1990).
Clinical signs, apart from signs of generalized systemic bacterial
infection, include the presence of an open ulcer on the frontal bone
of the skull between the eyes, and intradermal petechial hemor-
rhage of the jaws (Miyazaki and Plumb, 1985). The infection is
initiated by transport of bacteria from the environment through the
olfactory sac to the brain, with subsequent systemic dissemination
of bacteria, causing generalized septicemic infection (Miyazaki and
Plumb, 1985). During the infection, E. ictaluri may overcome
phagocytic activities of neutrophils and other granulocytic cells,
and multiplies intracellularly in foci of inflammation (Miyazaki and
Kaige, 1985). Therefore, previously observed suppression of fish
neutrophil function caused by nano-TiO2 (Jovanovi�c et al., 2011) has
the potential to favor non-bactericidal phagocytosis of E. ictaluri.

Nano-TiO2 is immunotoxic to fish and changes the function of
fish neutrophils in vivo. After exposure of fathead minnows to
10 mg/g body weight of nano-TiO2 for 48 h, respiratory burst,
degranulation of primary granules, and neutrophil extracellular
trap (NET) release were significantly reduced (Jovanovi�c et al.,
2011). The potential of nano-TiO2 to interfere with resistance to
infectious disease as a consequence of the ability to modulate im-
mune responses has not been studied, and there are no available
reports addressing possible outcomes of nanoparticle pre-exposure
followed by bacterial challenge. The aim of this study was to
determine if the outcome of bacterial challenge would be more
severe in fish that are exposed to environmentally relevant
concentrations of nano-TiO2, as compared with bacterial-
challenged fish without prior exposure to nano-TiO2. Our hypoth-
esis was that fish exposed to nano-TiO2 would have higher
morbidity andmortality than non-exposed fish after challengewith
A. hydrophila and E. ictaluri.

2. Materials and methods

2.1. Animal care

Fathead minnows (Pimephales promelas) with average weight
2.5 ± 0.5 g were maintained in the Iowa State University, College of
Veterinary Medicine, Ames, Iowa, USA. Fish were housed in a water
recirculation system supplied with dechlorinated tap water at 20 �C
in 120 L tanks, and fed twice daily with live brine shrimp larvae and
dried flake food. Fish were cared for in accordance with approved
Iowa State University animal care guidelines.

2.2. Bacterial culture

A. hydrophila (fish pathogen group, outbreak strain, USDA), and
E. ictaluri (fluorescent transformed strain 93e146 pAKgfp1 (Karsi
and Lawrence, 2007)) were plated on trypticase soy agar (TSA)
with 5% of sheep blood plates and incubated at 37 �C overnight
(A. hydrophila) or at 27 �C for two days (E. ictaluri). Morphologi-
cally distinct colonies were selected and placed in trypticase soy
broth in a sterile tube. Cultures of A. hydrophila or E. ictaluri were
incubated at 37 �C or 27 �C, respectively, to achieve logarithmic
growth. The optical density of the broth culture was measured
spectrophotometrically at 450 nm. Using a previously determined
growth curve, colony forming unit (CFU) was determined based
on optical density. After diluting the cultures with Hank's
Balanced Salt Solution without Ca, Mg and Phenol Red (HBSS) to
obtain the desired CFU, they were used immediately for intra-
peritoneal (i.p.) injections. To confirm the actual CFU used for
bacterial challenge, the diluted cultures were plated on TSA sheep
blood plates and enumerated.

2.3. Nanoparticle characterization

Nano-TiO2 (anatase, nanopowder, < 25 nm, 99.7% purity; Sig-
maeAldrich Corp, St. Louis, MO, USA) was used in all experiments.
Nano-TiO2 was suspended in sterile HBSS, pH ¼ 7.3. The suspen-
sions of nanoparticles were used as non-filtered or were filtered
through a 220 nm general purpose filter. The non-filtered nano-
TiO2 suspension contained particles with average aggregate
diameter of 585 nm, average zeta potential of �16.4 mV, and con-
ductivity of 16 mS cm�1. Polydispersity index (PDI) was 0.21. After
filtration, the aggregate size had an average diameter of 86 nm, zeta
potential of �8.87 mV, and conductivity of 15.4 mS cm�1 as
determined by dynamic light scattering (DLS) technique with
Malvern Zetasizer Nano ZS-90 instrument (Malvern Instruments
Ltd, Malvern,Worcestershire, UK). Since the fish were later injected
with the 24 h aged suspension (concentration had to be analytically
verified first) DLS measurements were also performed on a 24 h
aged suspension. Prior to measurements suspension was sonicated
for 10 min in a benchtop portable sonicator. The detailed charac-
terization of the nano-TiO2 is provided in the Supplementary
Information.

2.4. Nano-TiO2 accumulation in fish tissues

To determine the accumulation of nano-TiO2 in fish organs, fish
were injected i.p. with 10 mg g�1 body weight with non-filtered
nano-TiO2 suspension in HBSS. Negative control was injected
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with HBSS and both groups fed ad libitum for 48 h. After 48 h fish
were euthanized with an overdose of tricaine methane sulpho-
nate (MS-222, Argent Laboratories, Redmond WA, USA) and kid-
ney, spleen, and liver were each dissected from three individuals
per treatment and control group. This time period was chosen to
demonstrate that the administered nano-TiO2 was present in the
body at the beginning of the bacterial challenge study, as well as to
provide information on biodistribution. Inductively coupled
plasma mass spectrometry (ICP-MS) was performed according to
our previously established methodology (Jovanovi�c and Guzm�an,
2014) with some minor modifications. Briefly, organs were
weighed and digested in nitric acid. In addition, five whole in-
dividuals per group were digested with nitric acid. After digestion,
the concentration of Ti isotopes 47 and 49 were measured with
ICP-MS using a scandium (Sc) internal standard (m/z ¼ 45). The
preparation standard used for this analysis was created by spiking
blank samples with Ti and Sc. Results were corrected for the
natural abundance of Ti isotopes, averaged between the two Ti
isotopes measured, and converted to TiO2 concentration as mg g�1

of sample weight.

2.5. Nano-TiO2 treatment and challenge with A. hydrophila

To investigate the effects of in vivo application of nano-TiO2 on
the ability of the immune system to resolve bacterial infection, fish
were anesthetized with 100 mg L�1 of aerated and buffered (so-
dium bicarbonate, pH 8.0) solution of the MS-222. Upon entering
the third stage of anesthesia (Pali�c et al., 2006), fish were weighed
and injected i.p. with sterile preparations of nanoparticles as
described above or with HBSS. The fish were randomly divided into
five groups (two nanoparticle treatment groups, and three control
groups).

The first treatment group was injected with 10 mg g�1 body
weight of non-filtered nano-TiO2 suspended in HBSS as a standard
accepted approach for toxicological, disease challenge, and
immunological studies in various species (Janeway et al., 2008).
The second treatment group was injected with nano-TiO2 sus-
pended in HBSS and filtered through 220 nm general purpose
filter to remove large aggregates. The concentration of nano-TiO2
after the filtration was determined with ICP-MS and fish were
administered nano-TiO2 with a final concentration of 2 ng g�1

body weight. The high dose of 10 mg g�1 is close to the concen-
tration and particle size of nano-TiO2 present in raw sewage (Kiser
et al., 2009; Westerhoff et al., 2011). The low dose of 2 ng g�1 that
was administered to the experimental fish is close to the esti-
mated concentration of nano-TiO2 in surface water (Mueller and
Nowack, 2008). The low dose of 2 ng g�1 is, also, 10� less than
the concentration of nano-TiO2 present in treated effluent of
waste water treatment facilities (Kiser et al., 2009; Westerhoff
et al., 2011). Concomitantly, the low dose of 2 ng g�1 is 500�
less than an estimated human consumption of 1 mg kg�1 body
weight per day (Weir et al., 2012). It is however important to note
that administered nano-TiO2 concentration is the internal con-
centration in fish, not external concentration in the environment.
In the aquatic ecosystem, fish internal and external (environ-
mental) concentration of nano-TiO2 will not necessarily be equal
as this depends on many factors. Furthermore, although the
selected internal concentrations correspond to externally envi-
ronmentally relevant concentrations, the delivery method (i.p.) is
not environmentally relevant.

Two control groups were included: one group of fish was
injected with 10 mL g�1 body weight of HBSS; and a no-injection
control group was also included. All treatment and control groups
had 30e32 individual fish per group. After the injections, fish were
transferred to 38 L tanks, and fed to satiation for 48 h. We have
previously determined that 48 h after the administration of nano-
TiO2 to fathead minnows, their neutrophil function is diminished
(Jovanovi�c et al., 2011). After the 48 h incubation period, fish from
two treatment groups and one control group (bacteria control)
were anesthetized again, as described above, and injected i.p. with
10 mL per gram body weight of 5.5 � 107 CFU mL�1 of live
A. hydrophila culture suspension (previously determined to cause
10e15%mortality). Fish of the negative control groupwere injected
with 10 mL of sterile soy broth g�1 body weight.

After the injections, fish were returned to their 38 L tanks and
fed to satiation for 21 days. Mortality events were recorded twice
per day (every 12 h) to the end of experiment. Dead fish were
sampled for bacterial culture and observed by gross examination of
the skin, peritoneal cavity, and kidney. In all instances, a culture of
live A. hydrophila colonies was isolated on TSA sheep blood plates
from fish that died before the end of the experiment.

In a subsequent experiment, A. hydrophila cultures were killed
by exposure to 60 �C for 30 min. Inactivation was confirmed as no
colonies grew on TSA sheep blood agar. Experimental design and
injections of fish were performed as described above.

2.6. Nano-TiO2 treatment and challenge with E. ictaluri

Experimental setup for E. ictaluri was the same as the one
described for A. hydrophila. Two concentrations of live E. ictaluri
(10 mL per gram body weight of 2.2 � 106 CFU mL�1 and
4.4� 106 CFUmL�1) were administered. The challenge lasted for 28
days. Mortality events and confirmation of an active infection were
recorded as above. In all instances of fish deaths, live and fluores-
cent E. ictaluri were detected by fluorescent microscopy.

2.7. Phagocytosis assay

Phagocytosis of A. hydrophila was determined by flow cyto-
metric detection of fluorescent bacteria in neutrophils. Fluores-
cein isothiocyanate (FITC) labeling of A. hydrophilawas performed
following the previously described method (White-Owen et al.,
1992). Briefly, bacteria were grown in trypticase soy broth
together with 50 mg mL�1 FITC (Sigma F7250) at 37 �C overnight.
Following two washes with PBS, bacteria were heat-killed at 60 �C
for 30 min. Prior to killing, bacteria were plated on blood agar to
confirm CFU. Heat-killing of bacteria was also confirmed by
plating on blood agar. The bacterial pellet was resuspended with
trypticase soy broth, divided into aliquots, and stored at 4 �C until
used.

For the phagocytosis assay, a suspension of neutrophils was
prepared as previously described (Pali�c et al., 2005) and adjusted to
1 � 107 cells mL�1. Neutrophil suspensions were made from each
experimental group, each containing pooled neutrophils from the
anterior kidney of 10 randomly selected P. promelas. Cell suspen-
sions (25 mL) were added to the wells of 96-well plate containing
50 mL of 3% fetal bovine serum (FBS), and 50 mL of non-filtered
nano-TiO2 in HBSS (final concentration in the wells of
333 mgmL�1) or HBSS (negative control). After 1 h incubation at the
room temperature, 25 mL of FITC-labeled and opsonized
A. hydrophila at concentration of 1� 109 CFUmL�1 in 5% carp serum
(Common carp serum, courtesy of Wisconsin Department of Nat-
ural Resources, Yellowstone Lake, WI) were added to the wells.
Additional wells without bacteria were prepared as controls. The
whole experimental setup was performed in duplicate. Plates were
centrifuged at 400 � g for 2 min and incubated at room tempera-
ture for 2 h. After incubation, plates were washed twice and
centrifuged at 430 � g for 1 min, supernatant was discarded and
cell pellets were resuspended with 1% paraformaldehyde. Flow
cytometry data were acquired by a FACSCanto flow cytometer (BD
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Biosciences, San Jose, CA) and data were analyzed with FlowJo
version 9.4.11 software. The phagocytic activity was reported as the
percentage of neutrophils that had performed phagocytosis, and as
mean fluorescence intensity (MFI) of phagocytosis-positive cells. In
addition to in vitro evaluation, an ex vivo validation of phagocytosis
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validation, kidneys of four fish from the same experimental group
were pooled as a single sample and phagocytosis levels were
determined for 4e7 samples per experimental/control group.
2.8. Histopathology

Under anesthesia, fish were administered i.p. filtered or non-
filtered sterile preparations of nano-TiO2, as described above. Af-
ter 72 h, randomly selected fish (n ¼ 10) from experimental and
control groups were euthanized and immediately fixed in 10%
neutral buffered formalin. Bodies were sectioned sagittally, placed
in processing cassettes, demineralized for 18 h, and processed for
routine paraffin embedding. Tissue sections were cut at 6 microns,
with most blocks requiring at least two levels of sectioning to allow
evaluation of major organs. Results were evaluated by a ACVP
board-certified veterinary pathologist masked to treatments, using
a modified scoring system as previously described (Jovanovi�c et al.,
2014), with additional criteria for morphologic changes in anterior
and posterior kidney, including glomerular morphology, interstitial
Fig. 6. Histologic changes in the posterior kidney associated with in vivo exposure of P. prome
semi-quantitative histologic scores of the posterior kidney of fish injected with filtered or
matopoietic cells in the interstium (B). Note the significant differences in hematopoietic c
kidney (filtered TiO2, D). In each photomicrograph, bar size ¼ 5 microns. Populations of mel
TiO2, often with smaller or disseminated groups of cells (E). Significant differences in the glo
thickening of the glomerular capillary loop walls are presented in F, G (control) and H (filt
infiltration of neutrophils, and presence of pigment. In the
glomerulus, thickening of capillary walls, capillary dilation and
expansion of the mesangium were scored as no increase (0), mild
(1), moderate (2), or severe (3). In the interstitium of the kidney,
infiltration by neutrophils was scored as none (0), mild (scattered
neutrophils) (1), moderate (2), or severe (broad sheets of neutro-
phils) (3). The presence of interstitial, intravascular, or intra-
epithelial rodlet cells was scored as none (0),1e3 per 400� field (1),
4e8 per 400� field (2), and >9 per 400� field (3). Melanomacro-
phage groups in the posterior kidney were scored as number of
groups in a 400� field, with no groups (0), one group (1), two
groups (2), and three groups (3), with volume estimation when
melanomacrophages were dispersed.
2.9. Ultrastructural pathology

Fish were injected i.p. with non-filtered or filtered, sterile sus-
pensions of nano-TiO2 or HBSS, and fed ad libitum for 72 h as above.
Immediately after euthanasia, fish were necropsied and samples of
las to TiO2 nanoparticles. Significant differences (ANOVA, P < 0.0001) are present in the
non-filtered nano-TiO2 (A). Nano-TiO2 exposure resulted in reduced numbers of he-

ell populations (black arrows in C, control fish) from the interstitium of the posterior
anomacrophages were reduced in the renal interstitium of fish receiving filtered nano-
merular morphology, after administration of nanoparticles, with mesangial edema and
ered nano-TiO2). * indicates significant difference from the control group.



Fig. 7. Ultrastructural changes in the heart associated with in vivo exposure of P. promelas to TiO2 nanoparticles. A phagocyte (P) in the atrium of a fish exposed to non-filtered TiO2

contains electron-dense material (A and B) with two closely apposed, degenerating cells with electron-dense material (A and B), a lymphocyte (L), and many erythrocytes (E) in
close proximity to the phagocyte in A. An atrial phagocyte (P) lining a fibromuscular trabecular and a cardiomyocyte (C) contain similar electron-dense material (C). In panels A and
C, arrows point to electron dense material consistent with nano-TiO2 morphology (Geiser and Kreyling, 2010; Mühlfeld et al., 2008). There is expanded space between car-
diomyocytes (asterisk) and disruption of intercellular junctions (arrows) in D. Bars in A, B, D ¼ 500 nm and C ¼ 2 microns.
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heart and anterior kidney were immersed in 2.5% glutaraldehyde in
0.1 M-cacodylate buffer at 4OC. Fixed samples were rinsed in
cacodylate buffer, post-fixed in 1% osmium tetroxide, dehydrated in
alcohols, cleared in propylene oxide, and embedded in epoxy resin.
Areas of interest in the atrium and anterior kidney were selected by
light microscopic examination of 1-micron thick, toluidine blue-
stained, semi-thin sections, and ultrathin sections were cut,
stained with uranyl acetate and lead citrate, and examined with a
FEI Tecnai 12 Biotwin transmission electron microscope (FEI,
Hillsboro, OR).

2.10. Statistics

The statistical difference in mortality rate between groups was
calculated using the ChieSquare Test. The differences in nano-TiO2
distribution among organs and in histopathology scores among
treatments were evaluated with Analysis of Variance (ANOVA) or
KruskaleWallis test, if the population was not in Gaussian distri-
bution, followed by TukeyeKramer or Dunn's multiple comparison
tests, respectively. Phagocytosis assay data were subjected to the
Dunnett's test procedure or Student t-test where applicable.
3. Results

3.1. Nano-TiO2 accumulation in fish tissues

ICP-MS analysis confirmed the injected concentration of
10 mg g�1 body weight. After 48 h of exposure whole-body con-
centration was 9.0 ± 0.8 (mean ± standard error of the mean e

SEM) mg g�1 body weight of TiO2. TiO2 had the highest bio-
concentration in kidney (78.7 ± 28.3 mg g�1 kidney), followed by
spleen (46 ± 0.9 mg g�1 spleen), and liver (8.6 ± 3.2 mg g�1 liver)
(Fig. 1). The bioconcentration of nano-TiO2 in kidney and spleen
was significantly higher than in the whole body (P < 0.01 and
P < 0.05, respectively). In contrast, the concentration measured in
the liver was not statistically different from the average concen-
tration of the whole body. In the control samples that did not
receive any injections of nano-TiO2, TiO2 concentration was below
the detection limit of the instrument (0.1 mg L�1).

3.2. Challenge with A. hydrophila

The bacteria control (fish that received HBSS and then were



B. Jovanovi�c et al. / Environmental Pollution 203 (2015) 153e164 161
challenged with A. hydrophila) had cumulative mortality of 13.5%
(Fig. 2). The fish in the group that was pre-treated with 2 ng g�1

body weight of filtered nano-TiO2 and challenged with
A. hydrophila had 60% cumulative mortality. The fish in the group
pre-treated with 10 mg g�1 body weight of non-filtered nano-TiO2
and challenged with A. hydrophila had 82.5% of cumulative mor-
tality. Both filtered and non-filtered nano-TiO2 treatments, fol-
lowed by A. hydrophila challenge, caused statistically significant
increase in mortality comparing to the bacteria control (not
exposed to nano-TiO2; challenged with A. hydrophila) (ChieSquare,
P < 0.05). There were no mortalities observed in fish from nano-
TiO2 control (nano-TiO2 treated; no bacterial challenge) or sham-
injection control groups. Visual examination of fish that were
pre-treated with nano-TiO2 and challenged with A. hydrophila
revealed development of larger andmore severe hemorrhages than
in the fish that were subjected to A. hydrophila challenge only. In
fish injected with heat-killed A. hydrophila, there were no mortal-
ities observed in any of the treatment or control groups.

3.3. Challenge with E. ictaluri

Bacteria controls treated with 10 mL per gram body weight of
2.2 � 106 CFU mL�1, and 4.4 � 106 CFU mL�1 of live E. ictaluri had
cumulative mortality of 19% and 45% respectively. The fish in the
groups that were pre-treated with 2 ng g�1 body weight of filtered
nano-TiO2 and challenged with 2.2 � 106 CFU mL�1, and
4.4 � 106 CFU mL�1 E. ictaluri had significantly (ChieSquare,
P < 0.05 and P < 0.01 respectively) higher cumulative mortality rate
of 47% and 74% respectively, as compared with bacteria control
(Fig. 3A). The fish in the groups pre-treated with 10 mg g�1 body
weight of non-filtered nano-TiO2 and challenged with
2.2 � 106 CFU mL�1 or 4.4 � 106 CFU mL�1 E. ictaluri had signifi-
cantly higher cumulative mortality rate of 56% and 97% respec-
tively, as compared with bacteria control (ChieSquare, P < 0.01 and
P < 0.001 respectively) (Fig. 3B). There were no mortalities in nano-
TiO2 (nano-TiO2 treated; no bacterial challenge) and no injection
control groups.

3.4. Phagocytosis assay

Exposure of neutrophils for one hour to nano-TiO2 results in
significantly reduced phagocytosis in vitro. The percentage of
neutrophils that have performed phagocytosis of A. hydrophilawas
15% lower (Fig. 4A) in nano-TiO2 group as compared with the
control (t-test, P < 0.05). MFI was lower by 22% (t-test, P < 0.05),
indicating that the neutrophils that have performed phagocytosis
in nano-TiO2 group have phagocytized on average 22% fewer bac-
teria per neutrophil (Fig. 4B). Ex vivo validation revealed the same
pattern of reduction in phagocytosis rate 48 h after exposure to
nano-TiO2. In the control group 44.3 ± 3.5% (mean ± SEM) of
neutrophils were phagocytic while only 36.1 ± 2.9% and 24.4 ± 0.5%
of neutrophils from fish exposed to 10 mg g�1 body weight of non-
filtered nano-TiO2 and 2 ng g�1 body weight of filtered nano-TiO2,
respectively, were capable of performing phagocytosis.

3.5. Histopathology

Semi-quantitative morphologic scoring of tissue changes in fish
administered filtered or non-filtered nano-TiO2, as compared with
sham-injected (negative) controls, revealed significant differences
in the anterior kidney and posterior kidney (P< 0.01 and P< 0.0001,
respectively). In the anterior kidney, fish injected with filtered
nano-TiO2 often had increased numbers of neutrophils with
abundant, homogeneous eosinophilic cytoplasm and mild to
moderate loss of mononuclear cells with the morphology of
macrophages and lymphocytes (Fig. 5). Therewas amild increase of
neutrophils or loss of mononuclear cells in the anterior kidney of
fish exposed to non-filtered nano-TiO2. In the posterior kidney,
histologic changes, including mild to moderate interstitial
congestion, reduction in melanomacrophage groups, increased
numbers of neutrophils with abundant cytoplasm, and irregular
thickening of capillary walls, dilated capillaries and/or expansion of
the mesangium, contributed to statistically significant differences
between fish exposed to filtered nano-TiO2 compared to control
(Fig. 6A). Among these histologic features in the posterior kidney,
there were significantly reduced numbers of hematopoietic cells
after exposure to filtered nano-TiO2 (Fig. 6B, C, D). Also, there were
significant differences in the glomerular morphology with admin-
istration of filtered or non-filtered nanoparticles, with mesangial
edema thickening of the glomerular capillary loop walls (Fig. 6F).
Populations of melanomacrophages were reduced in the renal
interstitium of fish receiving filtered nano-TiO2, often with smaller
or disseminated groups of cells (Fig. 6E). Statistically significant
differences were not observed in the brain, coelomic cavity, or liver.

3.6. Ultrastructural pathology

In fish exposed to non-filtered or filtered nano-TiO2, many
phagocytes lining the fibromuscular trabeculae of the atrium or
admixed with atrial blood contain variably sized, intracytoplasmic
aggregates of electron-dense material when compared to the
control group (Fig. 7A). Some intracellular aggregates are
membrane-bound, while a membrane was not observed to sur-
round other aggregates of this material (Fig. 7B). This electron-
dense material did not have the fine tubular ultrastructure of
Weibel-Palade bodies, secretory organelles typical of endothelia
(Valentijn et al., 2011), althoughWeibel-Palade bodies were present
in some endothelial cells. The atrial trabeculae of fish exposed to a
filtered preparation of nano-TiO2 were markedly expanded by clear
space between cardiomyocytes, consistent with edema (Fig. 7C),
with disruption of many intercellular junctions between endothe-
lial cells and between cardiomyocytes (Fig. 7D) and regional loss of
myofibrillar architecture. Rarely, endocardial phagocytes with
intracytoplasmic aggregates of electron-dense material were
observed in a control fish.

4. Discussion

In vivo exposure of P. promelas, a common freshwater teleost, to
environmentally relevant concentrations of nano-TiO2 has impor-
tant biological effects. TiO2 bioaccumulated in the kidney and
spleen, both critical organs involved in hematopoiesis and immune
protection. Groups of fish pre-treated with nano-TiO2 and subse-
quently exposed to common bacterial pathogens of fish,
A. hydrophila or E. ictaluri, resulted in markedly increasedmortality.
Based on results, mechanisms of toxicity appear to target neutro-
phil function, hematopoiesis, and renal glomerular architecture.
The results of this study are in accordance with previous research
demonstrating the potential for nano-TiO2-mediated immunotox-
icity in fish (Jovanovi�c and Pali�c, 2012). The reduced function of
P. promelas neutrophils after exposure to nano-TiO2 has been
demonstrated previously (Jovanovi�c et al., 2011).

Present study also demonstrated that the kidney is one of the
major organs for nano-TiO2 bioaccumulation in fish as soon as 48 h
after parenteral administration, which is in accordance with pre-
vious investigations. Rainbow trout exposed to nano-TiO2 by i.p.
injection demonstrated renal bioaccumulation; with almost no
clearance even 90 days post-exposure (Scown et al., 2009). Another
recent study demonstrated that in rainbow trout up to 94% of TiO2
concentrated in the kidney after intravenous injection (Boyle et al.,
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2013). In fish, the kidney has a major role in hematopoiesis and
serves as a neutrophil depot (Zapata, 1979). Therefore, the
neutrophil population that is continuously produced and resides in
the fish kidney can be chronically exposed to nano-TiO2. Histo-
pathologic examination of tissues from TiO2-exposed fish support
the storage of nanoparticles in renal neutrophils, as sheets of large
cells with nuclear morphology consistent with neutrophils with a
distended cytoplasmic compartment were observed in some fish
exposed to filtered nano-TiO2. The loss of mature and progenitor
hematopoietic and immune system cells in the anterior and pos-
terior kidneys in fish exposed to nano-TiO2 represents another
mechanism through which nanoparticles may cause an ineffective
antibacterial response. Loss of hematopoietic and immune system
cells in the fish kidney after exposure to nanoparticles appear to be
a common histopatological feature after nanoparticle exposure,
irrespective to the type of nanoparticles (Jovanovi�c et al., 2014).
Significant differences in the glomerular morphology with
administration of filtered or non-filtered nanoparticles, with
thickening of the glomerular capillary loop walls and mesangial
edema were also observed by light microscopy in this study. The
irregularly thickened exterior surfaces of glomerular capillary loops
suggest pathology of the glomerular filtration barrier, which is
composed of fenestrated capillaries, basal lamina of endothelial
cells, and podocytes, with a charge- and size-selective sieve be-
tween podocytes foot processes (Tryggavason, 1999).

Phagocytes lining the atrial trabeculae have critical functions in
removal of particulate matter in teleosts, similar to macrophage
populations in mammalian lymph nodes (Nakamura and
Shimozawa, 1994). The cardiac endothelium also functions as a
semi-selective barrier between the plasma compartment and un-
derlying contractile cardiomyocytes with a critical role in main-
taining cardiac performance (Brutsaert, 2003). Many endocardial
phagocytes in fish exposed to nano-TiO2 in these experiments had
ingested electron-dense particulate material (which in its appear-
ance resembled nano-TiO2) and had a rounded morphology with
abundant cytoplasm, consistent with an activated phenotype. Since
followup elemental analyses of those cells were not performed by
electron spectroscopic imaging and parallel electron energy loss
spectroscopy there is no definite proof that the observed electron-
dense material is indeed TiO2. However, the electron microscopy
presentation of previously imaged nano-TiO2 anatase in tissues
(Geiser and Kreyling, 2010; Mühlfeld et al., 2008) is consistent with
material observed in samples from nano-TiO2 exposed fish (Fig. 7).
In fish exposed to filtered nano-TiO2, we observed separation of
endocardial cells from the underlying trabeculae, with disruption of
endothelial tight junctions as well as multifocal dissolution of
intercellular junctions of the intercalated disk between car-
diomyocytes. Disruption of the endothelial lining, accumulation of
interstitial edema, and loss of cardiomyocyte communication in
muscular trabeculae of the atrium is expected to potentiate intra-
vascular coagulation and to reduce cardiac function. Scant electron-
dense particulate matter in rare endothelial cells of control fish was
much less than in TiO2-treated fish and probably represents back-
ground environmental exposure.

Heat-inactivated A. hydrophila did not cause mortality in any of
the experimental groups. This is consistent with previous findings
(Rodríguez et al., 2008). The mechanism of A. hydrophila pathoge-
nicity include the use of a type 3 secretion system and secreted
toxins (Rosenzweig and Chopra, 2013), with both mechanisms
requiring viable bacteria. Samples of heat-killed A. hydrophila, as
used in this experiment, are expected to contain abundant lipo-
polysaccharide (LPS), because LPS is a component of the outer
membrane of Gram-negative bacteria. While nano-TiO2 can act as a
carrier of LPS through protein corona formation (Ashwood et al.,
2007), the absence of mortality in the experimental group
exposed both to nano-TiO2 and subsequently heat-killed
A. hydrophila suggests that delivery of LPS by nano-TiO2 to the
kidney cells is not an important pathogenic mechanism. The
observed increase in mortality with live A. hydrophila pretreated
with nano-TiO2 suggests direct immunotoxic effects of nano-TiO2
on renal granulocytic population (Jovanovi�c et al., 2011), as these
cells are critical for successful anti-bacterial defenses.

Present study further demonstrated that the neutrophil
phagocytosis rate of A. hydrophila in vitro was decreased by 15%
after exposure to nano-TiO2. On average, neutrophils that have
performed phagocytosis had phagocytized 22% fewer individual
bacteria per neutrophil after exposure to nano-TiO2. We theorize
that this reduction in phagocytosis is due to nanoparticle compe-
tition. Nano-TiO2 is heavily internalized by immune cells through
macropinocytosis (Bartneck et al., 2010); thus, there is a parti-
tioning of available phagosomal and cytoplasmic space between
nano-TiO2 and bacteria, as reflected by the significant decrease in
MFI we observed in association with nano-TiO2 exposure. Treat-
ment of freshwater invertebrates with various nanoparticles,
including TiO2, is known to reduce phagocytosis by immune cells
(Couleau et al., 2012; Gagn�e et al., 2008). Cumulatively, results
support the concept that nano-TiO2 increases the pathogenenicity
of A. hydrophila infection through loss of immune cell populations
and reduced phagocytic function, resulting in immunosuppression
and failure to mount an effective antibacterial response.

Infection by E. ictaluri yielded results similar to A. hydrophila
challenge. Pretreatment with nano-TiO2 significantly increased
mortality. Although E. ictaluri is susceptible to phagocytosis by fish
neutrophils, intracellular killing is not an effective means to control
this bacterium, and the main bactericidal effects are expressed
through neutrophilic extracellular killing mechanisms (Waterstrat
et al., 1991). There are numerous references documenting that
E. ictaluri can survive and replicate within fish neutrophils and
macrophages (Ainsworth and Chen, 1990; Baldwin and Newton,
1993; Booth et al., 2006; Morrison and Plumb, 1994). Thus,
decreased neutrophil extracellular function, predominately NET
release in vivo after exposure to nano-TiO2 (Jovanovi�c et al., 2011)
can contribute to bacterial survival in, and in the vicinity of,
phagocytes and result in progression of infection to death (Arazna
et al., 2013).

The concentrations of nano-TiO2 to which the fish were exposed
in present study are environmentally relevant, and represent
external concentration that the fish may encounter in the envi-
ronment. A dose of 2 ng g�1 body weight of nano-TiO2 falls close to
or within the estimated environmental concentration in the surface
water that ranges from 21 ng L�1 (Gottschalk et al., 2009) to
16 mg L�1 (Mueller and Nowack, 2008). The concentration of
2 ng g�1 is also 10 times less than the concentration of nano-TiO2
present in effluent of the waste water treatment facilities (Kiser
et al., 2009; Westerhoff et al., 2011). It is important to note that
since the fish were injected they were exposed internally to this
concentration. In the aquatic ecosystem, fish internal and external
(concentration in water) concentration of nano-TiO2 will not
necessarily be equal as this depends onmany factors. However, this
internal concentration of 2 ng g�1 is 500 times smaller than the
internal concentration to which humans are exposed orally on a
daily base e 1 mg g�1 body weight per day of nano-TiO2/E171 (Weir
et al., 2012). Therefore, this level of exposure raises potential health
concerns regarding the current practice of supplementing drinking
water, food, and pharmaceuticals with TiO2 intended for human
consumption.

In conclusion, the interaction of nano-TiO2 with innate immune
cells and their progenitors impaired host defenses of fish suffi-
ciently to result in significantly increased mortality and morbidity
during subsequent challenge by bacterial pathogens. Morphologic
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changes in glomerular and endocardial architecture suggest that
there may also be altered renal filtering function and cardiac
function, respectively, with nano-TiO2 exposure. These findings
indicate that environmental contamination by nano-TiO2 could
negatively affect fish survival by interfering with immune re-
sponses and internal organ function during disease outbreaks.
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