267 research outputs found

    A model for cascading failures in complex networks

    Full text link
    Large but rare cascades triggered by small initial shocks are present in most of the infrastructure networks. Here we present a simple model for cascading failures based on the dynamical redistribution of the flow on the network. We show that the breakdown of a single node is sufficient to collapse the efficiency of the entire system if the node is among the ones with largest load. This is particularly important for real-world networks with an highly hetereogeneous distribution of loads as the Internet and electrical power grids.Comment: 4 pages, 4 figure

    Autotetraploid Emergence via Somatic Embryogenesis in Vitis vinifera Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata

    Get PDF
    Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of 'Frappato' grapevine somatic embryos regenerated in medium supplemented with the growth regulators β-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the DNA profiles were transferred in field conditions to analyze the effect of polyploidization. Different ploidy levels induced several anatomical and morphological changes of the shoots and mature leaves. Alterations have been also observed in stomata. The length and width of stomata of tetraploid leaves were 39.9 and 18.6% higher than diploids, respectively. The chloroplast number per guard cell pair was higher (5.2%) in tetraploid leaves. On the contrary, the stomatal index was markedly decreased (12%) in tetraploid leaves. The observed morphological alterations might be useful traits for breeding of grapevine varieties in a changing environment

    Role of Network Topology in the Synchronization of Power Systems

    Get PDF
    We study synchronization dynamics in networks of coupled oscillators with bimodal distribution of natural frequencies. This setup can be interpreted as a simple model of frequency synchronization dynamics among generators and loads working in a power network. We derive the minimum coupling strength required to ensure global frequency synchronization. This threshold value can be efficiently found by solving a binary optimization problem, even for large networks. In order to validate our procedure, we compare its results with numerical simulations on a realistic network describing the European interconnected high-voltage electricity system, finding a very good agreement. Our synchronization threshold can be used to test the stability of frequency synchronization to link removals. As the threshold value changes only in very few cases when aplied to the European realistic network, we conclude that network is resilient in this regard. Since the threshold calculation depends on the local connectivity, it can also be used to identify critical network partitions acting as synchronization bottlenecks. In our stability experiments we observe that when a link removal triggers a change in the critical partition, its limits tend to converge to national borders. This phenomenon, which can have important consequences to synchronization dynamics in case of cascading failure, signals the influence of the uncomplete topological integration of national power grids at the European scale.Comment: The final publication is available at http://www.epj.org (see http://www.springerlink.com/content/l22k574x25u6q61m/

    Markov Chain Methods For Analyzing Complex Transport Networks

    Full text link
    We have developed a steady state theory of complex transport networks used to model the flow of commodity, information, viruses, opinions, or traffic. Our approach is based on the use of the Markov chains defined on the graph representations of transport networks allowing for the effective network design, network performance evaluation, embedding, partitioning, and network fault tolerance analysis. Random walks embed graphs into Euclidean space in which distances and angles acquire a clear statistical interpretation. Being defined on the dual graph representations of transport networks random walks describe the equilibrium configurations of not random commodity flows on primary graphs. This theory unifies many network concepts into one framework and can also be elegantly extended to describe networks represented by directed graphs and multiple interacting networks.Comment: 26 pages, 4 figure

    A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa

    Get PDF
    In cross-sectional studies increased vaginal bacterial diversity has been associated with vaginal inflammation which can be detrimental for health. We describe longitudinal changes at 5 visits over 8 weeks in vaginal microbiota and immune mediators in African women. Women (N = 40) with a normal Nugent score at all visits had a stable lactobacilli dominated microbiota with prevailing Lactobacillus iners. Presence of prostate-specific antigen (proxy for recent sex) and being amenorrhoeic (due to progestin-injectable use), but not recent vaginal cleansing, were significantly associated with microbiota diversity and inflammation (controlled for menstrual cycle and other confounders). Women (N = 40) with incident bacterial vaginosis (Nugent 7-10) had significantly lower concentrations of lactobacilli and higher concentrations of Gardnerella vaginalis, Atopobium vaginae, and Prevotella bivia, at the incident visit and when concentrations of proinflammatory cytokines (IL-1β, IL-12p70) were increased and IP-10 and elafin were decreased. A higher 'composite-qPCR vaginal-health-score' was directly associated with decreased concentrations of proinflammatory cytokines (IL-1α, IL-8, IL-12(p70)) and increased IP-10. This longitudinal study confirms the inflammatory nature of vaginal dysbiosis and its association with recent vaginal sex and progestin-injectable use. A potential role for proinflammatory mediators and IP-10 in combination with the vaginal-health-score as predictive biomarkers for vaginal dysbiosis merits further investigation

    Systemic Risk in a Unifying Framework for Cascading Processes on Networks

    Full text link
    We introduce a general framework for models of cascade and contagion processes on networks, to identify their commonalities and differences. In particular, models of social and financial cascades, as well as the fiber bundle model, the voter model, and models of epidemic spreading are recovered as special cases. To unify their description, we define the net fragility of a node, which is the difference between its fragility and the threshold that determines its failure. Nodes fail if their net fragility grows above zero and their failure increases the fragility of neighbouring nodes, thus possibly triggering a cascade. In this framework, we identify three classes depending on the way the fragility of a node is increased by the failure of a neighbour. At the microscopic level, we illustrate with specific examples how the failure spreading pattern varies with the node triggering the cascade, depending on its position in the network and its degree. At the macroscopic level, systemic risk is measured as the final fraction of failed nodes, XX^\ast, and for each of the three classes we derive a recursive equation to compute its value. The phase diagram of XX^\ast as a function of the initial conditions, thus allows for a prediction of the systemic risk as well as a comparison of the three different model classes. We could identify which model class lead to a first-order phase transition in systemic risk, i.e. situations where small changes in the initial conditions may lead to a global failure. Eventually, we generalize our framework to encompass stochastic contagion models. This indicates the potential for further generalizations.Comment: 43 pages, 16 multipart figure

    Integrating fluctuations into distribution of resources in transportation networks

    Full text link
    We propose a resource distribution strategy to reduce the average travel time in a transportation network given a fixed generation rate. Suppose that there are essential resources to avoid congestion in the network as well as some extra resources. The strategy distributes the essential resources by the average loads on the vertices and integrates the fluctuations of the instantaneous loads into the distribution of the extra resources. The fluctuations are calculated with the assumption of unlimited resources, where the calculation is incorporated into the calculation of the average loads without adding to the time complexity. Simulation results show that the fluctuation-integrated strategy provides shorter average travel time than a previous distribution strategy while keeping similar robustness. The strategy is especially beneficial when the extra resources are scarce and the network is heterogeneous and lowly loaded.Comment: 14 pages, 4 figure

    Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration

    Get PDF
    © 2020 The Authors. Fungi have major, negative socioeconomic impacts, but control with bioactive agents is increasingly restricted, while resistance is growing. Here, we describe an alternative fungal control strategy via materials operating passively (i.e., no killing effect). We screened hundreds of (meth)acrylate polymers in high throughput, identifying several that reduce attachment of the human pathogen Candida albicans, the crop pathogen Botrytis cinerea, and other fungi. Specific polymer functional groups were associated with weak attachment. Low fungal colonization materials were not toxic, supporting their passive, anti-attachment utility. We developed a candidate monomer formulation for inkjet-based 3D printing. Printed voice prosthesis components showed up to 100% reduction in C. albicans biofilm versus commercial materials. Furthermore, spray-coated leaf surfaces resisted fungal infection, with no plant toxicity. This is the first high-throughput study of polymer chemistries resisting fungal attachment. These materials are ready for incorporation in products to counteract fungal deterioration of goods, food security, and health

    Distributed flow optimization and cascading effects in weighted complex networks

    Full text link
    We investigate the effect of a specific edge weighting scheme (kikj)β\sim (k_i k_j)^{\beta} on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter β\beta and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter β\beta, we find that network resilience to cascading overloads and network throughput is optimal for the same value of β\beta over the range of node capacities and available bandwidth

    Traffic optimization in transport networks based on local routing

    Full text link
    Congestion in transport networks is a topic of theoretical interest and practical importance. In this paper we study the flow of vehicles in urban street networks. In particular, we use a cellular automata model to simulate the motion of vehicles along streets, coupled with a congestion-aware routing at street crossings. Such routing makes use of the knowledge of agents about traffic in nearby roads and allows the vehicles to dynamically update the routes towards their destinations. By implementing the model in real urban street patterns of various cities, we show that it is possible to achieve a global traffic optimization based on local agent decisions.Comment: 4 pages, 5 figure
    corecore