210 research outputs found

    The shaping of anticipation: The networked development of inferential capacity in governing Southeast Asian deltas

    Get PDF
    Motivated by foreseeable changes in the Earth's systems, governments across the world learn to anticipate the consequences. Understanding how such anticipation comes about should ease its further development. We therefore explore the central capacity within anticipatory governance: the capacity to infer future consequences. Such inferential capacity consists of tools, techniques, and practices increasing an agent's options to infer consequences. We examine the development of this capacity for two Southeast Asian deltas, using data from a multi-sited ethnography and a social network analysis. These methods combine the small-scale ‘lived’ perspective of agents and the multiscale network in which these agents deploy strategies to entrench tools, techniques, and practices for inferential capacity. Strategic choices in positioning for network effects and fostering reciprocity matter, while values and historical contingencies cannot be brushed aside

    How networked organisations build capacity for anticipatory governance in South East Asian deltas

    Get PDF
    Building capacity for governments to make inferences about future developments enhances their ability to anticipate and plan for climate change adaptation. This study examines the question: how do networked organisations build capacity for anticipatory governance through project-based interactions? We analyse a global network of organisations that mobilise climate and hydrological modelling technologies into the Chao Phraya and Ayeyarwaddy deltas. The methodology innovatively combines ethnographic data with policy analysis and social network analysis. Findings suggest that organisations consolidate technology and knowledge transfer through a global network. However, their governance effect in enhancing anticipatory decision making is found to be marginal at the local level. We argue that anticipatory governance practices need a balancing of foresight tools and techniques with local institutional arrangements in order to be effective. We further demonstrate that technology transfer projects need to be backed up with social and strategic capacity building in order to nurture consistent anticipatory governance in different cultural contexts. We conclude that preventive actions, together with transparent operational response frameworks, could significantly improve resilience and adaptability of local knowledge systems and institutions dealing with climate change adaptation. Such integration could enable anticipatory response measures to better manage risk, as well as increase institutional cooperation for long term environmental planning

    Towards automated detection, semi-quantification and identification of microbial growth in clinical bacteriology: A proof of concept.

    Get PDF
    Automation in microbiology laboratories impacts management, workflow, productivity and quality. Further improvements will be driven by the development of intelligent image analysis allowing automated detection of microbial growth, release of sterile samples, identification and quantification of bacterial colonies and reading of AST disk diffusion assays. We investigated the potential benefit of intelligent imaging analysis by developing algorithms allowing automated detection, semi-quantification and identification of bacterial colonies. Defined monomicrobial and clinical urine samples were inoculated by the BD Kiestra™ InoqulA™ BT module. Image acquisition of plates was performed with the BD Kiestra™ ImagA BT digital imaging module using the BD Kiestra™ Optis™ imaging software. The algorithms were developed and trained using defined data sets and their performance evaluated on both defined and clinical samples. The detection algorithms exhibited 97.1% sensitivity and 93.6% specificity for microbial growth detection. Moreover, quantification accuracy of 80.2% and of 98.6% when accepting a 1 log tolerance was obtained with both defined monomicrobial and clinical urine samples, despite the presence of multiple species in the clinical samples. Automated identification accuracy of microbial colonies growing on chromogenic agar from defined isolates or clinical urine samples ranged from 98.3% to 99.7%, depending on the bacterial species tested. The development of intelligent algorithm represents a major innovation that has the potential to significantly increase laboratory quality and productivity while reducing turn-around-times. Further development and validation with larger numbers of defined and clinical samples should be performed before transferring intelligent imaging analysis into diagnostic laboratories

    Machine Learning Approach for Candida albicans Fluconazole Resistance Detection Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    Get PDF
    Candida albicans causes life-threatening systemic infections in immunosuppressed patients. These infections are commonly treated with fluconazole, an antifungal agent targeting the ergosterol biosynthesis pathway. Current Antifungal Susceptibility Testing (AFST) methods are time-consuming and are often subjective. Moreover, they cannot reliably detect the tolerance phenomenon, a breeding ground for the resistance. An alternative to the classical AFST methods could use Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass spectrometry (MS). This tool, already used in clinical microbiology for microbial species identification, has already offered promising results to detect antifungal resistance on non-azole tolerant yeasts. Here, we propose a machine-learning approach, adapted to MALDI-TOF MS data, to qualitatively detect fluconazole resistance in the azole tolerant species C. albicans. MALDI-TOF MS spectra were acquired from 33 C. albicans clinical strains isolated from 15 patients. Those strains were exposed for 3 h to 3 fluconazole concentrations (256, 16, 0 μg/mL) and with (5 μg/mL) or without cyclosporin A, an azole tolerance inhibitor, leading to six different experimental conditions. We then optimized a protein extraction protocol allowing the acquisition of high-quality spectra, which were further filtered through two quality controls. The first one consisted of discarding not identified spectra and the second one selected only the most similar spectra among replicates. Quality-controlled spectra were divided into six sets, following the sample preparation's protocols. Each set was then processed through an R based script using pre-defined housekeeping peaks allowing peak spectra positioning. Finally, 32 machine-learning algorithms applied on the six sets of spectra were compared, leading to 192 different pipelines of analysis. We selected the most robust pipeline with the best accuracy. This LDA model applied to the samples prepared in presence of tolerance inhibitor but in absence of fluconazole reached a specificity of 88.89% and a sensitivity of 83.33%, leading to an overall accuracy of 85.71%. Overall, this work demonstrated that combining MALDI-TOF MS and machine-learning could represent an innovative mycology diagnostic tool

    Roles of bovine Waddlia chondrophila and Chlamydia trachomatis in human preterm birth.

    Get PDF
    Waddlia chondrophila and Chlamydia trachomatis are intracellular bacteria associated with human miscarriage. We investigated their role in human preterm birth. Whereas presence of Chlamydia trachomatis DNA in genital tract was associated with human preterm birth, Waddlia was not, despite being present in women's genital tracts

    Undressing of Waddlia chondrophila to enrich its outer membrane proteins to develop a new species-specific ELISA.

    Get PDF
    Waddlia chondrophila, an obligate intracellular bacterium of the Chlamydiales order, is considered as an agent of bovine abortion and a likely cause of miscarriage in humans. Its role in respiratory diseases was questioned after the detection of its DNA in clinical samples taken from patients suffering from pneumonia or bronchiolitis. To better define the role of Waddlia in both miscarriage and pneumonia, a tool allowing large-scale serological investigations of Waddlia seropositivity is needed. Therefore, enriched outer membrane proteins of W. chondrophila were used as antigens to develop a specific ELISA. After thorough analytical optimization, the ELISA was validated by comparison with micro-immunofluorescence and it showed a sensitivity above 85% with 100% specificity. The ELISA was subsequently applied to human sera to specify the role of W. chondrophila in pneumonia. Overall, 3.6% of children showed antibody reactivity against W. chondrophila but no significant difference was observed between children with and without pneumonia. Proteomic analyses were then performed using mass spectrometry, highlighting members of the outer membrane protein family as the dominant proteins. The major Waddlia putative immunogenic proteins were identified by immunoblot using positive and negative human sera. The new ELISA represents an efficient tool with high throughput applications. Although no association with pneumonia and Waddlia seropositivity was observed, this ELISA could be used to specify the role of W. chondrophila in miscarriage and in other diseases

    NK cells and other innate lymphoid cells in hematopoietic stem cell transplantation

    Get PDF
    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34+ cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT

    Comparison of Inoculation with the InoqulA and WASP Automated Systems with Manual Inoculation.

    Get PDF
    The quality of sample inoculation is critical for achieving an optimal yield of discrete colonies in both monomicrobial and polymicrobial samples to perform identification and antibiotic susceptibility testing. Consequently, we compared the performance between the InoqulA (BD Kiestra), the WASP (Copan), and manual inoculation methods. Defined mono- and polymicrobial samples of 4 bacterial species and cloudy urine specimens were inoculated on chromogenic agar by the InoqulA, the WASP, and manual methods. Images taken with ImagA (BD Kiestra) were analyzed with the VisionLab version 3.43 image analysis software to assess the quality of growth and to prevent subjective interpretation of the data. A 3- to 10-fold higher yield of discrete colonies was observed following automated inoculation with both the InoqulA and WASP systems than that with manual inoculation. The difference in performance between automated and manual inoculation was mainly observed at concentrations of >10(6) bacteria/ml. Inoculation with the InoqulA system allowed us to obtain significantly more discrete colonies than the WASP system at concentrations of >10(7) bacteria/ml. However, the level of difference observed was bacterial species dependent. Discrete colonies of bacteria present in 100- to 1,000-fold lower concentrations than the most concentrated populations in defined polymicrobial samples were not reproducibly recovered, even with the automated systems. The analysis of cloudy urine specimens showed that InoqulA inoculation provided a statistically significantly higher number of discrete colonies than that with WASP and manual inoculation. Consequently, the automated InoqulA inoculation greatly decreased the requirement for bacterial subculture and thus resulted in a significant reduction in the time to results, laboratory workload, and laboratory costs

    A three-year longitudinal evaluation of the forearm bone density of users of etonogestrel- and levonorgestrel-releasing contraceptive implants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate bone mineral density (BMD) at baseline and at 18 and 36 months of use of etonogestrel (ENG)-and levonorgestrel (LNG)-releasing contraceptive implants. This is a continuation of a previous study in which BMD was evaluated at baseline and at 18 months of use.</p> <p>Methods</p> <p>A total of 111 women, 19–43 years of age, wererandomly allocated to use one of the two implants. At 36 months of follow-up, only 36 and 39 women were still using the ENG- and LNG-releasing implants, respectively. BMD was evaluated at the distal and at the ultra-distal radius of the non-dominant forearm using dual-energy X-ray absorptiometry.</p> <p>Results</p> <p>There was no difference in the BMD of users of either implant at 18 and at 36 months. BMD was significantly lower at 18 and at 36 months at the distal radius in both groups of users compared to pre-insertion values; however, no difference was found at the ultra-distal radius.</p> <p>Conclusion</p> <p>Women 19–43 years of age using either one of these two contraceptive implants for 36 months had lower BMD values at the distal radius compared to pre-insertion values; however, no difference was found at the ultra-distal radius.</p

    The Waddlia Genome: A Window into Chlamydial Biology

    Get PDF
    Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae
    corecore