263 research outputs found

    Soils in warmer and less developed countries have less micronutrients globally

    Get PDF
    Soil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.The sampling included in this study were supported by the European Research Council (ERC) grant 647038 (BIODESERT), the BES grant agreement No. LRB17\1019 (MUSGONET) and the Marie SkƂodowska-Curie grant agreement 702057 (CLIMIFUN). We would like to thank the researchers originally involved in the BIODESERT, CLIMIFUN and MUSGONET projects for their help with samplings. E.M.-J. acknowledges the Humboldt Foundation for supporting his research stay in Germany (Fellowship for Experienced Researchers) and a project from the Spanish Ministry of Science and Innovation (PID2020-116578RB-I00). M.D.-B. is supported by a RamĂłn y Cajal grant (RYC2018-025483-I), a project from the Spanish Ministry of Science and Innovation (PID2020-115813RA-I00) and a project PAIDI 2020 from the Junta de AndalucĂ­a (P20_00879). E.G. is supported by the Conselleria de InnovaciĂłn, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana, and the European Social Fund grant APOSTD/2021/188 and European Research Council (ERC) grant 647038. F.T.M. is supported by European Research Council (ERC) grant 647038 and Generalitat Valenciana grant CIDEGENT/2018/041. M.D. and T.W.C. were funded by the Marc R. Benioff Revocable Trust and in collaboration with the World Economic Forum. This article is part of the contract between ETH Zurich and University of Alicante “Mapping terrestrial ecosystem structure at the global scale”. R.O.H. is supported by the RamĂłn y Cajal program from the MICINN (RYC-2017 22032), a PAIDI 2020 project from the Junta de AndalucĂ­a (Ref. 20_00323) and a project from the Spanish Ministry of Science and Innovation (PID2019-106004RA-I00/AEI/10.13039/501100011033). Authors acknowledge support by the Open Access Publication Initiative of Freie UniversitĂ€t Berlin. Open Access funding enabled and organized by Projekt DEAL

    Soils in warmer and less developed countries have less micronutrients globally

    Get PDF
    Soil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet

    Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus

    Get PDF
    Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence - by controlling for phylogenetic structure - for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease

    Nutrient Availability Controls the Impact of Mammalian Herbivores on Soil Carbon and Nitrogen Pools in Grasslands

    Get PDF
    Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change

    Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network

    Get PDF
    A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities

    Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network

    Get PDF
    A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities

    Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

    Get PDF
    17 páginas.- 3 figuras.- 194 referenciasGlobal change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding.Funding information Deutsche Forschungsgemeinschaft, Grant/Award Numbers: DFG– FZT 118, 202548816, 493345801, DFG, FOR 5000, 192626868, 326061700, MO 412/54‐2; DFG, Grant/Award Numbers: Ei 862/29‐1, Ei 862/ 31‐1; GlobNet project, Grant/Award Number: ANR‐16‐CE02‐0009; Investissement d'Avenir, Grant/Award Numbers: Trajectories: ANR‐15‐ IDEX‐02, Montane: OSUG@2020: ANR‐10‐ LAB‐56; Saxon State Ministry for Science, Culture and Tourism (SMWK), Germany, Grant/Award Number: 3‐7304/35/6‐2021/ 48880; sDiv, Grant/Award Number: SFW9.02; ERC‐StG SHIFTFEEDBACK, Grant/Award Number: 851678; European Union's Horizon 2020 research and innovation programme, Grant/Award Numbers: 864287— THRESHOLD—ERC‐2019‐COG, 817946; Swedish Research Council Formas, Grant/Award Number: 2020‐00807; German Federal Environmental Foundation, Grant/Award Number: DBU, 20021/752Peer reviewe

    No Plan B: the Achilles heel of high performance sport management

    Get PDF
    Research question: The severity and immediacy of funding cuts to UK National Governing Bodies of Sport (NGBs), driven by the ‘No Compromise’ policy framework for Olympic funding, triggers a cyclical need for turnaround management. Adept strategies during times of considerable challenge is stark, yet literature investigating turnaround management within NGBs remains limited. Consequently, this paper examines two questions: how do NGBs respond to UK Sport funding cuts and how are their responses enabled or restricted by their organisational context? Research methods: A case study methodology was used to develop in-depth insights into how three NGBs responded over a twelve-month period of turnaround management. This was informed by 21 semi-structured interviews with chief executives/presidents, performance managers/head coaches and elite athletes. The actions of the NGBs were analysed through a thematic analysis that made use of Boyne’s (2004) 3 Rs of turnaround strategy. Results and findings: The results highlight that NGBs’ turnaround strategies were constrained by extreme funding dependency and a prohibitive institutional environment that led to states of flux and a focus on short-term operational survival. As a result, the measures taken undermined future success. Implications: An embedded feature of the ‘No Compromise’ framework is severe funding cuts. This should be a significant theme in NGB strategy development. The evidence of this study is that NGBs do not prepare, nor react strategically, when faced with the prospect (or fact of) severe cuts. Consequently, the cases of turnaround management in this study signal the urgent need for further research into the impact of the ‘No Compromise’ framework on the management of NGBs

    Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

    Full text link
    Global change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding

    Cardiac and vascular structure and function parameters do not improve with alternate nightly home hemodialysis: An interventional cohort study

    Get PDF
    Background: Nightly extended hours hemodialysis may improve left ventricular hypertrophy and function and endothelial function but presents problems of sustainability and increased cost. The effect of alternate nightly home hemodialysis (NHD) on cardiovascular structure and function is not known
    • 

    corecore