6,248 research outputs found
Clustering and collisions of heavy particles in random smooth flows
Finite-size impurities suspended in incompressible flows distribute
inhomogeneously, leading to a drastic enhancement of collisions. A description
of the dynamics in the full position-velocity phase space is essential to
understand the underlying mechanisms, especially for polydisperse suspensions.
These issues are here studied for particles much heavier than the fluid by
means of a Lagrangian approach. It is shown that inertia enhances collision
rates through two effects: correlation among particle positions induced by the
carrier flow and uncorrelation between velocities due to their finite size. A
phenomenological model yields an estimate of collision rates for particle pairs
with different sizes. This approach is supported by numerical simulations in
random flows.Comment: 12 pages, 9 Figures (revTeX 4) final published versio
Raman excitation spectroscopy of carbon nanotubes: effects of pressure medium and pressure
Raman excitation and emission spectra for the radial breathing mode (RBM) are
reported, together with a preliminary analysis. From the position of the peaks
on the two-dimensional plot of excitation resonance energy against Raman shift,
the chiral indices (m, n) for each peak are identified. Peaks shift from their
positions in air when different pressure media are added - water, hexane,
sulphuric acid - and when the nanotubes are unbundled in water with surfactant
and sonication. The shift is about 2 - 3 cm-1 in RBM frequency, but
unexpectedly large in resonance energy, being spread over up to 100meV for a
given peak. This contrasts with the effect of pressure. The shift of the peaks
of semiconducting nanotubes in water under pressure is orthogonal to the shift
from air to water. This permits the separation of the effects of the pressure
medium and the pressure, and will enable the true pressure coefficients of the
RBM and the other Raman peaks for each (m, n) to be established unambiguously.Comment: 6 pages, 3 Figures, Proceedings of EHPRG 2011 (Paris
Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet
Studies of the mechanical properties of single-walled carbon nanotubes are
hindered by the availability only of ensembles of tubes with a range of
diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes.
Under high pressure, the radial breathing mode shows a strong environmental
effect shown here to be largely independent of the nature of the environment .
For the G-mode, the pressure coefficient varies with diameter consistent with
the thick-wall tube model. However, results show an unexpectedly strong
environmental effect on the pressure coefficients. Reappraisal of data for
graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and
the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review
Deep Space Network information system architecture study
The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control
Heavy particle concentration in turbulence at dissipative and inertial scales
Spatial distributions of heavy particles suspended in an incompressible
isotropic and homogeneous turbulent flow are investigated by means of high
resolution direct numerical simulations. In the dissipative range, it is shown
that particles form fractal clusters with properties independent of the
Reynolds number. Clustering is there optimal when the particle response time is
of the order of the Kolmogorov time scale . In the inertial range,
the particle distribution is no longer scale-invariant. It is however shown
that deviations from uniformity depend on a rescaled contraction rate, which is
different from the local Stokes number given by dimensional analysis. Particle
distribution is characterized by voids spanning all scales of the turbulent
flow; their signature in the coarse-grained mass probability distribution is an
algebraic behavior at small densities.Comment: 4 RevTeX pgs + 4 color Figures included, 1 figure eliminated second
part of the paper completely revise
Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by single crystal neutron diffraction
Polarized and unpolarized neutron diffraction studies have been carried out
on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl,
Br). A model of the magnetic structure associated with the propagation vectors
k'Cl ~ -0.150,0.422,1/2 and k'Br ~ -0.172,0.356,1/2 and stable below TN=18 K
for X=Cl and TN=11 K for X=Br is proposed. A feature of the model, common to
both the bromide and chloride, is a canted coplanar motif for the 4 Cu2+ spins
on each tetrahedron which rotates on a helix from cell to cell following the
propagation vector. The Cu2+magnetic moment determined for X=Br, 0.395(5)muB,
is significantly less than for X=Cl, 0.88(1)muB at 2K. The magnetic structure
of the chloride associated with the wave-vector k' differs from that determined
previously for the wave vector k~0.150,0.422,1/2 [O. Zaharko et.al. Phys. Rev.
Lett. 93, 217206 (2004)]
Cassiopeia A: dust factory revealed via submillimetre polarimetry
If Type-II supernovae - the evolutionary end points of short-lived, massive
stars - produce a significant quantity of dust (>0.1 M_sun) then they can
explain the rest-frame far-infrared emission seen in galaxies and quasars in
the first Gyr of the Universe. Submillimetre observations of the Galactic
supernova remnant, Cas A, provided the first observational evidence for the
formation of significant quantities of dust in Type-II supernovae. In this
paper we present new data which show that the submm emission from Cas A is
polarised at a level significantly higher than that of its synchrotron
emission. The orientation is consistent with that of the magnetic field in Cas
A, implying that the polarised submm emission is associated with the remnant.
No known mechanism would vary the synchrotron polarisation in this way and so
we attribute the excess polarised submm flux to cold dust within the remnant,
providing fresh evidence that cosmic dust can form rapidly. This is supported
by the presence of both polarised and unpolarised dust emission in the north of
the remnant, where there is no contamination from foreground molecular clouds.
The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which,
coupled with the brief timescale available for grain alignment (<300 yr),
suggests that supernova dust differs from that seen in other Galactic sources
(where f_pol=2-7%), or that a highly efficient grain alignment process must
operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou
Forehead reflectance photoplethysmography to monitor heart rate: preliminary results from neonatal patients
Around 5%–10% of newborn babies require some form of resuscitation at birth and heart rate (HR) is the best guide of efficacy. We report the development and first trial of a device that continuously monitors neonatal HR, with a view to deployment in the delivery room to guide newborn resuscitation. The device uses forehead reflectance photoplethysmography (PPG) with modulated light and lock-in detection. Forehead fixation has numerous advantages including ease of sensor placement, whilst perfusion at the forehead is better maintained in comparison to the extremities. Green light (525 nm) was used, in preference to the more usual red or infrared wavelengths, to optimize the amplitude of the pulsatile signal. Experimental results are presented showing simultaneous PPG and electrocardiogram (ECG) HRs from babies (n = 77), gestational age 26–42 weeks, on a neonatal intensive care unit. In babies ≥32 weeks gestation, the median reliability was 97.7% at ±10 bpm and the limits of agreement (LOA) between PPG and ECG were +8.39 bpm and −8.39 bpm. In babies <32 weeks gestation, the median reliability was 94.8% at ±10 bpm and the LOA were +11.53 bpm and −12.01 bpm. Clinical evaluation during newborn deliveries is now underway
Precision control of thermal transport in cryogenic single-crystal silicon devices
We report on the diffusive-ballistic thermal conductance of multi-moded
single-crystal silicon beams measured below 1 K. It is shown that the phonon
mean-free-path is a strong function of the surface roughness
characteristics of the beams. This effect is enhanced in diffuse beams with
lengths much larger than , even when the surface is fairly smooth, 5-10
nm rms, and the peak thermal wavelength is 0.6 m. Resonant phonon
scattering has been observed in beams with a pitted surface morphology and
characteristic pit depth of 30 nm. Hence, if the surface roughness is not
adequately controlled, the thermal conductance can vary significantly for
diffuse beams fabricated across a wafer. In contrast, when the beam length is
of order , the conductance is dominated by ballistic transport and is
effectively set by the beam area. We have demonstrated a uniformity of 8%
in fractional deviation for ballistic beams, and this deviation is largely set
by the thermal conductance of diffuse beams that support the
micro-electro-mechanical device and electrical leads. In addition, we have
found no evidence for excess specific heat in single-crystal silicon membranes.
This allows for the precise control of the device heat capacity with normal
metal films. We discuss the results in the context of the design and
fabrication of large-format arrays of far-infrared and millimeter wavelength
cryogenic detectors
- …