If Type-II supernovae - the evolutionary end points of short-lived, massive
stars - produce a significant quantity of dust (>0.1 M_sun) then they can
explain the rest-frame far-infrared emission seen in galaxies and quasars in
the first Gyr of the Universe. Submillimetre observations of the Galactic
supernova remnant, Cas A, provided the first observational evidence for the
formation of significant quantities of dust in Type-II supernovae. In this
paper we present new data which show that the submm emission from Cas A is
polarised at a level significantly higher than that of its synchrotron
emission. The orientation is consistent with that of the magnetic field in Cas
A, implying that the polarised submm emission is associated with the remnant.
No known mechanism would vary the synchrotron polarisation in this way and so
we attribute the excess polarised submm flux to cold dust within the remnant,
providing fresh evidence that cosmic dust can form rapidly. This is supported
by the presence of both polarised and unpolarised dust emission in the north of
the remnant, where there is no contamination from foreground molecular clouds.
The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which,
coupled with the brief timescale available for grain alignment (<300 yr),
suggests that supernova dust differs from that seen in other Galactic sources
(where f_pol=2-7%), or that a highly efficient grain alignment process must
operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou