155 research outputs found

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2

    Full text link
    This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current

    Compound Evolutionary History of the Rhesus Macaque Mhc Class I B Region Revealed by Microsatellite Analysis and Localization of Retroviral Sequences

    Get PDF
    In humans, the single polymorphic B locus of the major histocompatibility complex is linked to the microsatellite MIB. In rhesus macaques, however, haplotypes are characterized by the presence of unique combinations of multiple B genes, which may display different levels of polymorphism. The aim of the study was to shed light on the evolutionary history of this highly complex region. First, the robustness of the microsatellite MIB-linked to almost half of the B genes in rhesus macaques (Mamu-B)–for accurate B haplotyping was studied. Based on the physical map of an established haplotype comprising 7 MIB loci, each located next to a certain Mamu-B gene, two MIB loci, MIB1 and MIB6, were investigated in a panel of MHC homozygous monkeys. MIB1 revealed a complex genotyping pattern, whereas MIB6 analysis resulted in the detection of one or no amplicon. Both patterns are specific for a given B haplotype, show Mendelian segregation, and even allow a more precise haplotype definition than do traditional typing methods. Second, a search was performed for retroelements that may have played a role in duplication processes as observed in the macaque B region. This resulted in the description of two types of duplicons. One basic unit comprises an expressed Mamu-B gene, adjacent to an HERV16 copy closely linked to MIB. The second type of duplicon comprises a Mamu-B (pseudo)gene, linked to a truncated HERV16 structure lacking its MIB segment. Such truncation seems to coincide with the loss of B gene transcription. Subsequent to the duplication processes, recombination between MIB and Mamu-B loci appears to have occurred, resulting in a hyperplastic B region. Thus, analysis of MIB in addition to B loci allows deciphering of the compound evolutionary history of the class I B region in Old World monkeys

    A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early radiation of the <it>Cetartiodactyla </it>is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (<it>Cetacea </it>and <it>Ruminantia</it>). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields.</p> <p>Results and discussion</p> <p>We report a large interstitial insertion in the Y amelogenin locus in most of the <it>Cetartiodactyla </it>lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species.</p> <p>When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in <it>Cetartiodactyla </it>whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion.</p> <p>The 1 kbp <it>Amel-Y </it>amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region.</p> <p>Conclusion</p> <p>The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the <it>Cetartiodactyla </it>but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science.</p

    The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1

    Get PDF
    This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC . First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented

    Contribution du CNRS/IN2P3 à l'upgrade d'ATLAS. Proposition soumise au Conseil Scientifique de l'IN2P3 du 21 Juin 2012

    Get PDF

    Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    Get PDF
    Prototypes of the \fermi{} system have been used to read out a prototype of the \atlas{} hadron calorimeter in a beam test at the CERN SPS. The \fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out

    Response of the ATLAS tile calorimeter prototype to muons

    Get PDF
    A study of high energy muons traversing the ATLAS hadron Tile calorimeter in the barrel region in the energy range between 10 and 300~GeV is presented. Both test beam experimental data and Monte Carlo simulations are given and show good agreement. The Tile calorimeter capability of detecting isolated muons over the above energy range is demonstrated. A signal to background ratio of about 10 is expected for the nominal LHC luminosity (1034cm2sec110^{34} cm^{-2} sec^{-1}). The photoelectron statistics effect in the muon shape response is shown. The e/mip ratio is found to be 0.81±0.03 0.81 \pm 0.03; the e/μ\mu ratio is in the range 0.91 - 0.97. The energy loss of a muon in the calorimeter, dominated by the energy lost in the absorber, can be correlated to the energy loss in the active material. This correlation allows one to correct on an event by event basis the muon energy loss in the calorimeter and therefore reduce the low energy tails in the muon momentum distribution
    corecore