551 research outputs found

    Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous

    Get PDF
    Palaeontologists have long sought to explain the diversification of individual clades to whole biotas at global scales. Advances in our understanding of the spatial distribution of the fossil record through geological time, however, has demonstrated that global trends in biodiversity were a mosaic of regionally heterogeneous diversification processes. Drivers of diversification must presumably have also displayed regional variation to produce the spatial disparities observed in past taxonomic richness. Here, we analyse the fossil record of ammonoids, pelagic shelled cephalopods, through the Late Cretaceous, characterised by some palaeontologists as an interval of biotic decline prior to their total extinction at the Cretaceous-Paleogene boundary. We regionally subdivide this record to eliminate the impacts of spatial sampling biases and infer regional origination and extinction rates corrected for temporal sampling biases using Bayesian methods. We then model these rates using biotic and abiotic drivers commonly inferred to influence diversification. Ammonoid diversification dynamics and responses to this common set of diversity drivers were regionally heterogeneous, do not support ecological decline, and demonstrate that their global diversification signal is influenced by spatial disparities in sampling effort. These results call into question the feasibility of seeking drivers of diversity at global scales in the fossil record

    Improved protein structure prediction using potentials from deep learning

    Get PDF
    Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7

    Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)

    Get PDF
    We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13 Submissions were made by three free-modelling methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on-par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 free-modelling assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group. (An average GDT_TS of 61.4.) The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 free-modelling domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods

    Can majority support save an endangered language? A case study of language attitudes in Guernsey

    Get PDF
    Many studies of minority language revitalisation focus on the attitudes and perceptions of minorities, but not on those of majority group members. This paper discusses the implications of these issues, and presents research into majority andf minority attitudes towards the endangered indigenous vernacular of Guernsey, Channel Islands. The research used a multi-method approach (questionnaire and interview) to obtain attitudinal data from a representative sample of the population that included politicians and civil servants (209 participants). The findings suggested a shift in language ideology away from the post-second world war ‘culture of modernisation’ and monolingual ideal, towards recognition of the value of a bi/trilingual linguistic heritage. Public opinion in Guernsey now seems to support the maintenance of the indigenous language variety, which has led to a degree of official support. The paper then discusses to what extent this ‘attitude shift’ is reflected in linguistic behaviour and in concrete language planning measures

    Improvisation and Transformation: Yes to the Mess

    Get PDF
    The field of organizational change has chiefly been studied from a teleological perspective. Most models of change emphasize action that is rational and goal oriented. What often gets overlooked and under theorized is the continuous, iterative nature of organizational life, the unplanned and serendipitous actions by and between people that lead to new discoveries and innovation. Recent research on organizational improvisation seeks to explore this area. In this chapter we will address two questions – what is the experience of improvisation and what are the conditions that support improvisation to flourish in organizations? In the first part of this paper, we look at the phenomenology of improvisation, the actual lived experience of those who improvise in the face of the unknown or in the midst of chaotic conditions. We will explore the strategies that some professional improvisers employ to deliberately create the improvisatory moment. We will then look at the dynamics of organizational life and explore the cultural beliefs, organizational structures, and leadership practices that support improvisation. We will draw primarily upon the model from Barrett (2012) that focuses on the how the nature of jazz improvisation and the factors that support improvisation can be transferred to leadership activities. This falls in the tradition of others who draw upon arts-based metaphors, including jazz music and theatrical improvisation, to suggest insights for leadership and ways of organizing. Since this is a book devoted to individual transformation as well as organizational transformation, we will also touch on the topic of how improvisation is a developmental project and explore the potential for improvisation to lead to personal transformation. We will attempt to move back and forth between both themes – organizational and personal transformation. Ultimately the two topics are not separate. Any significant organizational transformation begins with an improvisation. And any meaningful improvisatory move by a person is potentially a moment of self-discovery and an identity-shaping event

    Perspectivas clĂĄsicas y modernas de las virtudes en la empresa (II)".

    Get PDF
    Este cuaderno contiene: "En busca de la virtud: el papel de las virtudes, los valores y las fortalezas de carĂĄcter en la toma de decisiones Ă©ticas" "Participar en el bien comĂșn de la empresa" "Antes de la virtud: biologĂ­a, cerebro, comportamiento y ‘sentido moral’" "La posibilidad de la virtud

    Mouse SLX4 Is a Tumor Suppressor that Stimulates the Activity of the Nuclease XPF-ERCC1 in DNA Crosslink Repair

    Get PDF
    SLX4 binds to three nucleases (XPF-ERCC1, MUS81-EME1, and SLX1), and its deficiency leads to genomic instability, sensitivity to DNA crosslinking agents, and Fanconi anemia. However, it is not understood how SLX4 and its associated nucleases act in DNA crosslink repair. Here, we uncover consequences of mouse Slx4 deficiency and reveal its function in DNA crosslink repair. Slx4-deficient mice develop epithelial cancers and have a contracted hematopoietic stem cell pool. The N-terminal domain of SLX4 (mini-SLX4) that only binds to XPF-ERCC1 is sufficient to confer resistance to DNA crosslinking agents. Recombinant mini-SLX4 enhances XPF-ERCC1 nuclease activity up to 100-fold, directing specificity toward DNA forks. Mini-SLX4-XPF-ERCC1 also vigorously stimulates dual incisions around a DNA crosslink embedded in a synthetic replication fork, an essential step in the repair of this lesion. These observations define vertebrate SLX4 as a tumor suppressor, which activates XPF-ERCC1 nuclease specificity in DNA crosslink repairope

    Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms

    Full text link
    [EN] The main aim of this study is to establish the effect of the Exploitation and Exploration; and the influence of these learning flows on the Innovative Outcome (IO). The Innovative Outcome refers to new products, services, processes (or improvements) that the organization has obtained as a result of an innovative process. For this purpose, a relationship model is defined, which is empirically contrasted, and can explains and predicts the cyclical dynamization of learning flows on innovative outcome in knowledge intensive firms. The quantitative test for this model use the data from entrepreneurial firms biotechnology sector. The statistical analysis applies a method based on variance using Partial Least Squares (PLS). Research results confirm the hypotheses, that is, they show a positive dynamic effect between the Exploration and the Innovative as outcomes. In the same vein, they results confirm the presence of the cyclic movement of innovative outcome with the Exploitation.In addition, this research is part of the Project ECO2015-71380-R funded by the Spanish Ministry of Economy, Industry and Competitiveness and the State Research Agency. Co-financed by the European Regional Development Fund (ERDF).Vargas-Mendoza, NY.; Lloria, MB.; Salazar Afanador, A.; Vergara DomĂ­nguez, L. (2018). Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms. International Entrepreneurship and Management Journal. 14(4):1053-1069. https://doi.org/10.1007/s11365-018-0496-5S10531069144Alegre, J., & Chiva, R. (2008). Assessing the impact of organizational learning capability on product innovation performance: an empirical test. Technovation, 28, 315–326.Amara, N., Landry, R., Becheikh, N., & Ouimet, M. (2008). Learning and novelty of innovation in established manufacturing SMEs. Technovation, 28, 450–463.AragĂłn-Mendoza, J., Pardo del Val, M., & Roig, S. (2016). The influence of institutions development in venture creation decision: a cognitive view. Journal of Business Research, 69(11), 4941–4946.Ardichvili, A. (2008). Learning and knowledge sharing in virtual communities of practice: motivators, barriers, and enablers. Advances in Developing Human Resources, 10(4), 541–554.Argyris, C., & Schön, D. (1978). Organizational learning: a theory of action perspective. Reading: Addison Wesley.Bagozzi, R. P., Yi, Y., & Singh, S. (1991). On the use of structural equation models in experimental designs: two extensions international. Journal of Research in Marketing, 8, 125–140.Belda, J., Vergara L., Salazar, A., & Safont G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs, accepted for publication in Signal Processing.Boland, R. J. J., & Tenkasi, R. V. (1995). Perspective making and perspective taking in communities of knowing. Organization Science, 6(4), 350–372.Bontis, N., (1998). Intellectual capital: an exploratory study that develops measures models. Management Decision, 36, 63–76.Bontis, N. (1999). Managing an organizational learning system by aligning stocks and flows of knowledge: an empirical examination of intellectual capital, knowledge management, and business performance. 1999. Management of Innovation and New Technology Research Centre, McMaster University.Bontis, N., Keow, W., & Richardson, S. (2000). Intellectual capital and the nature of business in Malaysia. Journal of Intellectual Capital, 1(1), 85–100Bontis, N., Hullan, J., & Crossan, M. (2002). Managing an organizational learning system by aligning stocks and flows. Journal of Management Studies, 39, 438–469.Brachos, D., Kostopulos, K., Sodersquist, K. E., & Prastacos, G. (2007). Knowledge effectiveness, social context and innovation. Journal of Knowledge Management, 11(5), 31–44.Calantone, R. J., Cavusgil, S. T., & Zhao, Y. (2002). Learning orientation, firm innovation capability, and firm performance. Industrial Marketing Management, 31, 515–524.Chang, T. J., Yeh, S. P., & Yeh, I. J. (2007). The effects of joint rewards system in new product development. International Journal of Manpower, 28(3/4), 276–297.Chin, W. (1998). The partial least square approach to structural equation modeling. In G. A. Marcoulides (Ed.) (pp. 294–336). New Jersey: Lawrence Erlbaum Associates.Cho, N., Li, G., & Su, C. (2007). An empirical study on the effect of individual factors on knowledge sharing by knowledge type. Journal of Global Business and Technology, 3(2), 1–15.Cohen, W. M., & Levin, R. C. (1989). Empirical studies of innovation and market structure. In R. Schmalansee & R. D. Willing (Eds.), Handbook of industrial organization II. New York: Elsevier.Cohen, W. M., & Levinthal, D. A. (1990). Absorptive-capacity – a new perspective on learning and innovation. Administrative Science Quarterly, 35, 128–152.Cooper, R. G. (2000). New product performance: what distinguishes the star products. Austrian Journal of Management, 25, 17–45.Crossan, M., & Berdrow, I. (2003). Organizational learning and strategic renewal. Strategic Management Journal, 24, 1087–1105.Crossan, M., & Apaydin, M. (2010). A multi-dimensional framework of organizational innovation: a systematic review of the literature. Journal of Management Studies, 47(6), 1154–1191.Crossan, M., Lane, H. W., & White, R. E. (1999). An organizational learning framework: from intuition to institution. Academy of Management Review, 24, 522–537.Damanpour, F., & Aravind, D. (2012). Managerial innovation: conceptions, processes, and antecedents. Management and Organization Review, 8(2), 423–454.Damanpour, F., & Shanthi, G. (2001). The dynamics of the adoption of products and process innovations in organizations. Journal of Management Studies, 38(1), 21–65.Decarolis, D. M., & Deeds, D. L. (1999). The impact of stock and flows of organizational knowledge on firm performance: An empirical investigation of the biotechnology industry. Strategic Management Journal, 20, 953–968.Demartini, C. (2015). Relationships between social and intellectual capital: empirical Evidence from IC statements. Knowledge and Process Management, 22(2), 99–111.Dupuy, F. (2004). Sharing knowledge: they why and how of organizational change. Hampshire: Palgrave Macmillan.Fornell, C., & Bookstein, F. I. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.Ganter, A., & Hecker, A. (2013). Deciphering antecedents of organizational innovation. Journal of Business Research, 66(5), 575–584.Ganter, A., & Hecker, A. (2014). Configurational paths to organizational innovation: qualitative comparative analyses of antecedents and contingencies. Journal of Business Research, 67, 1285–1292.Gopalakrishnan, S., & Damanpour, F. (1997). A review of innovation research in economics, sociology and technology management. International Journal of Management Science, 25, 15–28.Hedberg, B. (1981). How organizations learn and unlearn. In P. Nystrom & W. Starbuck (Eds.), Handbook of organizational design. New York: Oxford University.Hedlund, G., & Nonaka, I. (1993). Models of knowledge management in the west and Japan. In: P. Lorange, B. Chacravrarthy, J. Ross, and J. Van de ven (Eds.) Cambridge: Basil Blackwell.Henseler, J., Ringle, C.M., & Sinkovics, R.R. (2009). The use the partial least squares path modeling. In: R. Sinkovics and N. Pervez (Eds.) 277–319.Hsu, I. (2006). Enhancing employee tendencies to share knowledge-case studies on nine companies in Taiwan. International Journal of Information Management, 26(4), 326–338.Hsu, I. (2008). Knowledge sharing practices as a facilitating factor for improving organizational performance though human capital: a preliminary test. Expert Systems with Application, 35, 316–1326.Huang, Q., Davison, R., & Gu, J. (2008). Impact of personal and cultural factors on knowledge sharing in China. Asia Pacific Journal Management, 25(3), 451–471.Ibarra, H. (1993). Network centrality, power, and innovation involvement – determinants of technical and administrative roles. Academy of Management Journal, 36(3), 471–501.Iebra, I. L., Zegarra, P. S., & Zegarra, A. S. (2011). Learning for sharing: an empirical analysis of organizational learning and knowledge sharin. International Entrepreneurship Management Journal, 7, 509–518.Ipe, M. (2003). Knowledge sharing in organizations: a conceptual framework. Human Resource Development Review, 2(4), 337–359.Jenkin, T. (2013). Extending the 4I organizational learning model: information sources, foraging processes and tools. Administrative Sciences, 3, 96–109.JimĂ©nez-JimĂ©nez, D., & Sanz-Valle, R. (2011). Innovation, organizational learning, and performance. Journal of Business Research, 64, 408–417.Kane, G. C., & Alavi, M. (2007). Information technology and organizational learning: an investigation of exploration and exploitation processes. Organization Science, 18(5), 796–812.Kleinbaum, D. G., Kupper, N. N., Muller, K. E. (1988). Applied regression analysis and other Multivariable’s methods, PWS KENT.Klomp, L., & Van Leeuwen, G. (2001). Linking innovation and firm performance: a new approach. International Journal of the Economics of Business, 8(3), 343–364.Lansisalmi, H., Kivimaki, M., Aalto, P., & Ruoranen, R. (2006). Innovation in healthcare: a systematic review of recent research. Nursing Science Quarterly, 19(1), 66–72.LaperriĂšre, A., & Spence, M. (2015). Enacting international opportunities: the role of organizational learning in knowledge-intensive business services. Journal of International Entrepreneurship, 13(3), 212–241.Levitt, B., & March, J. G. (1988). Organizational learning. Annual Review of Sociology, 14, 319–340.Lin, H. (2007). Knowledge sharing and firm innovation capability: an empirical study. International Journal of Manpower, 28(3/4), 315–332.Lloria, M. B., & Moreno-LuzĂłn, M. D. (2014). Organizational learning: proposal of an integrative scale and research instrument. Journal of Business Research, 67, 692–697.March, J. G. (1991). Exploration and exploitation in organizational learning. Organizational Science, 2, 71–87.Matikainen, M., Terho, H., Parvinen, P., & Juppo, A. (2016). The role and impact of firm’s strategic orientations on launch performance: significance of relationship orientation. Journal of Business & Industrial Marketing, 31(5), 625–639.Mone, M. A., McKinley, W., & Barker, V. L. (1998). Organizational decline and innovation: a contingency framework. Academy of Management Review, 23, 115–132.Moreno-LuzĂłn, M. D., & Lloria, B. (2008). The role of non-structural and informal mechanisms of integration and integration as forces in knowledge creation. British Journal of Management, 19, 250–276.Moskaliuk, J., Bokhorst, F., & Cress, U. (2016). Learning from others' experiences: how patterns foster interpersonal transfer of knowledge-in-use. Computers in Human Behavior, 55, 69–75.Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. How Japanese companies create the dynamics of innovation. New York: Oxford University Press.Nonaka, I., & von Krogh, G. (2009). Perspective tacit knowledge and knowledge conversion: controversy and advancement in organizational knowledge creation theory. Organization Science, 20(3), 635–652.Parida, V., Lahti, T., & Wincent, J. (2016). Exploration and exploitation and firm performance variability: a study of ambidexterity in entrepreneurial firms. International Entrepreneurship Management Journal, 12, 1147–1164.Pew, H., Plowman, D., & Hancock, P. (2008). The involving research on intellectual capital. Journal of Intellectual Capital, 9, 585–608.Potter, R. E., & Balthazard, P. A. (2004). The role of individual memory and attention processes during electronic brainstorming. MIS Quarterly, 28(4), 621–643.Ramadani, V., Hyrije, A. A., LĂ©o-Paul, D., Gadaf, R., & Sadudin, I. (2017). The impact of knowledge spillovers and innovation on firm-performance: findings from the Balkans countries. International Entrepreneurship Management Journal, 13, 299–325.Ren, S., Shu, R., Bao, Y., & Chen, X. (2016). Linking network ties to entrepreneurial opportunity discovery and exploitation: the role of affective and cognitive trust. International Entrepreneurship and Management Journal, 12(2), 465–485.Ringle, C. M., Wende, S., & Will, A. (2005). Smart PLS 2.0 (M3) beta, Hamburg: http://www.smartpls.de .Ringle, C. M., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-SEM. MIS Quarterly, 36(1), iii–xiv.Sanchez, R., & Heene, A. (1997). A competence perspective on strategic learning and knowledge management. En Sanchez, R. and Heene, A. (eds.) Strategic learning and knowledge management. John Wiley and Sons.Seidler-de Alwis, R., & Hartmann, E. (2008). The use of tacit knowledge within innovative companies: knowledge management in innovative enterprises. Journal of Knowledge Management, 12(1), 133–147.Shrivastava, P. (1983). A typology of organizational learning systems. Journal of Management Studies, 20, 7–28.Tansky, J., Ribeiro, D., & Roig, S. (2010). Linking entrepreneurship and human resources in globalization. Human Resource Management, 49(2), 217–223.Teece, D. (2012). Dynamic capabilities: routines versus entrepreneurial action. Journal of Management Studies, 49(8), 1395–1401.Tenenhaus, M., Vinzi, V., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 49, 159–205.vande Vrande, V., de Jong, J., Vanhaverbeke, W., & Rochemont, M. (2009). Open innovation in SMEs: trends, motives and management challenges. Technovation, 29, 423–437.Vargas, N., & Lloria, M. B. (2014). Dynamizing intellectual capital through enablers and learning flows. Industrial Management and Data Systems, 114(1), 2–20.Vargas, N., & Lloria, M. B. (2017). Performance and intellectual capital: how enablers drive value creation in organisations. Knowledge and Process Management, 24(2), 114–124.Vargas, N., Lloria, M. B., & Roig-DobĂłn, S. (2016). Main drivers of human capital, learning and performance. The Journal of Technology Transfer, 41(5), 961–978.Vergara, L., Salazar, A., Belda, J., Safont, G., Moral, S., & Iglesias, S. (2017). Signal processing on graphs for improving automatic credit card fraud detection. Proceeding of 2017 I.E. 51st international Carnahan Conference on Security Technology (ICCST 2017), https://doi.org/10.1109/CCST.2017.8167820 , 23–26 Oct, 2017, Madrid, Spain.Wallin, M. W., & Von Krogh, G. (2010). Organizing for open innovation: focus o the integration of knowledge. Organizational Dynamics, 39(2), 145–154.Wang, C. L., & Ahmed, P. K. (2004). Linking innovation and firm performance: a new approach. European International Journal of Technology Management, 27, 674–688.Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of econometric models (pp. 47–74). Cambridge: Academic Press.Wold, H. (1985). Factors influencing the outcome of economic sanctions. In Sixto RĂ­os Honorary. Trabajos de EstadĂ­stica and de InvestigaciĂłn Operativa, 36(3), 325–337

    Intuition: Myth or a Decision-making Tool?

    Get PDF
    Faced with today’s ill-structured business environment of fast-paced change and rising uncertainty, organizations have been searching for management tools that will perform satisfactorily under such ambiguous conditions. In the arena of managerial decision making, one of the approaches being assessed is the use of intuition. Based on our definition of intuition as a non-sequential information-processing mode, which comprises both cognitive and affective elements and results in direct knowing without any use of conscious reasoning, we develop a testable model of integrated analytical and intuitive decision making and propose ways to measure the use of intuition
    • 

    corecore