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Protein structure prediction aims to determine the three-dimensional shape of a protein from11

its amino acid sequence1. This problem is of fundamental importance to biology as the struc-12

ture of a protein largely determines its function2 but can be hard to determine experimen-13

tally. In recent years, considerable progress has been made by leveraging genetic informa-14

tion: analysing the co-variation of homologous sequences can allow one to infer which amino15

acid residues are in contact, which in turn can aid structure prediction3. In this work, we16

show that we can train a neural network to accurately predict the distances between pairs17

of residues in a protein which convey more about structure than contact predictions. With18

this information we construct a potential of mean force4 that can accurately describe the19

shape of a protein. We find that the resulting potential can be optimised by a simple gradient20

descent algorithm, to realise structures without the need for complex sampling procedures.21

The resulting system, named AlphaFold, has been shown to achieve high accuracy, even for22

sequences with relatively few homologous sequences. In the most recent Critical Assessment23

of Protein Structure Prediction5 (CASP13), a blind assessment of the state of the field of pro-24

tein structure prediction, AlphaFold created high-accuracy structures (with TM-scores† of25

0.7 or higher) for 24 out of 43 free modelling domains whereas the next best method, using26

sampling and contact information, achieved such accuracy for only 14 out of 43 domains.27

AlphaFold represents a significant advance in protein structure prediction. We expect the in-28

creased accuracy of structure predictions for proteins to enable insights in understanding the29

function and malfunction of these proteins, especially in cases where no homologous proteins30

have been experimentally determined7.31

Proteins are at the core of most biological processes. Since the function of a protein is32

dependent on its structure, understanding protein structure has been a grand challenge in biology33

for decades. While several experimental structure determination techniques have been developed34

†Template Modelling score6, between 0 and 1, measures the degree of match of the overall (backbone) shape of a
proposed structure to a native structure.
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and improved in accuracy, they remain difficult and time-consuming2. As a result, decades of35

theoretical work has attempted to predict protein structure from amino acid sequences.36
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Contact precisions L long L/2 long L/5 long
Set N AF 498 032 AF 498 032 AF 498 032
FM 31 45.5 42.9 39.8 58.0 55.1 51.7 70.1 67.3 61.6
FM/TBM 12 59.1 53.0 48.9 74.2 64.5 64.2 85.3 81.0 79.6
TBM 61 68.3 65.5 61.9 82.4 80.3 76.4 90.6 90.5 87.1

c

Fig. 1 | AlphaFold’s performance in the CASP13 assessment. (a) Number of free modelling
(FM + FM/TBM) domains predicted to a given TM-score threshold for AlphaFold and the other
97 groups. (b) For the six new folds identified by the CASP13 assessors, AlphaFold’s TM-score
compared with the other groups, with native structures. The structure of T1017s2-D1 is unavailable
for publication. (c) Precisions for long-range contact prediction in CASP13 for the most probable
L, L/2 or L/5 contacts, where L is the length of the domain. The distance distributions used by
AlphaFold (AF) in CASP13, thresholded to contact predictions, are compared with submissions
by the two best-ranked contact prediction methods in CASP13: 498 (RaptorX-Contact8) and 032
(TripletRes9), on “all groups” targets, excluding T0999.

CASP5 is a biennial blind protein structure prediction assessment run by the structure pre-37

diction community to benchmark progress in accuracy. In 2018, AlphaFold joined 97 groups from38

around the world in entering CASP13. Each group submitted up to 5 structure predictions for39

each of 84 protein sequences whose experimentally-determined structures were sequestered. As-40

sessors divided the proteins into 104 domains for scoring and classified each as being amenable41

to template-based modelling (TBM, where a protein with a similar sequence has a known struc-42

ture, and that homologous structure is modified in accordance with the sequence differences) or43

requiring free modelling (FM, when no homologous structure is available), with an intermediate44

(FM/TBM) category. Figure 1a shows that AlphaFold stands out in performance above the other45

entrants, predicting more FM domains to high accuracy than any other system, particularly in the46
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0.6–0.7 TM-score range. The assessors ranked the 98 participating groups by the summed, capped47

z-scores of the structures, separated according to category. AlphaFold achieved a summed z-score48

of 52.8 in the FM category (best-of-5) vs 36.6 for the next closest group (322)‡. Combining FM49

and TBM/FM categories, AlphaFold scored 68.3 vs 48.2. AlphaFold is able to predict previously50

unknown folds to high accuracy as shown in Figure 1b. Despite using only free modelling tech-51

niques and not using templates, AlphaFold also scored well in the TBM category according to the52

assessors’ formula 0-capped z-score, ranking fourth by the top-1 model or first by the best-of-553

models. Much of the accuracy of AlphaFold is due to the accuracy of the distance predictions,54

which is evident from the high precision of the contact predictions of Table 1c.55

The most successful free modelling approaches so far10–12 have relied on fragment assembly56

to determine the shape of the protein of interest. In these approaches a structure is created through57

a stochastic sampling process, such as simulated annealing13, that minimises a statistical potential58

derived from summary statistics extracted from structures in the Protein Data Bank (PDB14). In59

fragment assembly, a structure hypothesis is repeatedly modified, typically by changing the shape60

of a short section, retaining changes which lower the potential, ultimately leading to low potential61

structures. Simulated annealing requires many thousands of such moves and must be repeated62

many times to have good coverage of low-potential structures.63

In recent years, structure prediction accuracy has improved through the use of evolutionary64

covariation data15 found in sets of related sequences. Sequences similar to the target sequence65

are found by searching large datasets of protein sequences derived from DNA sequencing and66

aligned to the target sequence to make a multiple sequence alignment (MSA). Correlated changes67

in two amino acid residue positions across the sequences of the MSA can be used to infer which68

residues might be in contact. Contacts are typically defined to occur when the β-carbon atoms of69

two residues are within 8 Ångström of one another. Several methods have been used to predict70

the probability that a pair of residues is in contact based on features computed from MSAs16–19
71

including neural networks20–23. Contact predictions are incorporated in structure prediction by72

modifying the statistical potential to guide the folding process to structures that satisfy more of the73

predicted contacts12,24. Previous work25,26 has made predictions of the distance between residues,74

particularly for distance geometry approaches8,27–29. Neural network distance predictions without75

covariation features were used to make the EPAD potential26 which was used for ranking struc-76

ture hypotheses and the QUARK pipeline12 used a template-based distance profile restraint for77

template-based modelling.78

In this work we present a new, deep-learning, approach to protein structure prediction, whose79

stages are illustrated in Figure 2a. We show that it is possible to construct a learned, protein-specific80

potential by training a neural network (Fig. 2b) to make accurate predictions about the structure81

of the protein given its sequence, and to predict the structure itself accurately by minimising the82

‡Results from http://predictioncenter.org/casp13/zscores_final.cgi?formula=
assessors
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Fig. 2 | The folding process illustrated for CASP13 target T0986s2. (Length L = 155) (a)
Steps of structure prediction. (b) The neural network predicts the entire L × L distogram based
on MSA features, accumulating separate predictions for 64× 64-residue regions. (c) One iteration
of gradient descent (1 200 steps) is shown, with TM-score and RMSD plotted against step number
with five snapshots of the structure. The secondary structure (from SST30) is also shown (helix
in blue, strand in red) along with the the native secondary structure (SS), the network’s secondary
structure prediction probabilities and the uncertainty in torsion angle predictions (as κ−1 of the
von Mises distributions fitted to the predictions for φ and ψ). While each step of gradient descent
greedily lowers the potential, large global conformation changes are effected, resulting in a well-
packed chain. (d) shows the final first submission overlaid on the native structure (in grey). (e)
shows the average (across the test set, n = 377) TM-score of the lowest-potential structure against
the number of repeats of gradient descent (log scale).
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potential by gradient descent (Fig. 2c). The neural network predictions include backbone torsion83

angles and pairwise distances between residues. Distance predictions provide more specific in-84

formation about the structure than contact predictions and provide a richer training signal for the85

neural network. Predicting distances, rather than contacts as in most prior work, models detailed86

interactions rather than simple binary decisions. By jointly predicting many distances, the network87

can propagate distance information respecting covariation, local structure and residue identities to88

nearby residues. The predicted probability distributions can be combined to form a simple, prin-89

cipled protein-specific potential. We show that with gradient descent, it is simple to find a set of90

torsion angles that minimise this protein-specific potential using only limited sampling. We also91

show that whole chains can be optimised together, avoiding the need for segmenting long proteins92

into hypothesised domains which are modelled independently.93

The central component of AlphaFold is a convolutional neural network which is trained94

on PDB structures to predict the distances dij between the Cβ atoms of pairs, ij, of a protein’s95

residues. Based on a representation of the protein’s amino acid sequence, S, and features derived96

from the sequence’s MSA, the network, similar in structure to those used for image recognition97

tasks31, predicts a discrete probability distribution P (dij | S,MSA(S)) for every ij pair in a98

64 × 64 residue region, as shown in Fig. 2b. The full set of distance distribution predictions99

is constructed by averaging predictions for overlapping regions and is termed a distogram (from100

distance histogram). Figure 3 shows an example distogram prediction for one CASP protein,101

T0955. The modes of the distribution (Fig. 3c) can be seen to closely match the true distances102

(Fig. 3b). Example distributions for all distances to one residue (29) are shown in Fig. 3c. Further103

analysis of how the network predicts the distances is shown in Methods Figure 14.104

In order to realise structures that conform to the distance predictions, we construct a smooth105

potential Vdistance by fitting a spline to the negative log probabilities, and summing across all the106

residue pairs. We parameterise protein structures by the backbone torsion angles (φ, ψ) of all107

residues and build a differentiable model of protein geometry x = G(φ,ψ) to compute the Cβ108

coordinates, x, and thus the inter-residue distances, dij = ‖xi − xj‖, for each structure, and109

express Vdistance as a function of φ andψ. For a protein with L residues, this potential accumulates110

L2 terms from marginal distribution predictions. To correct for the over-representation of the111

prior we subtract a reference distribution32 from the distance potential in the log domain. The112

reference distribution models the distance distributions P (dij | length) independent of the protein113

sequence and is computed by training a small version of the distance prediction neural network on114

the same structures, without sequence or MSA input features. A separate output head of the contact115

prediction network is trained to predict discrete probability distributions of backbone torsion angles116

P (φi, ψi | S,MSA(S)). After fitting a von Mises distribution, this is used to add a smooth torsion117

modelling term Vtorsion = −
∑

log pvonMises(φi, ψi | S,MSA(S)) to the potential. Finally, to118

prevent steric clashes, we add Rosetta’s Vscore2 smooth
10 to the potential, as this incorporates a van119

der Waals term. We used multiplicative weights for each of the three terms in the potential, but no120

weighting noticeably outperformed equal weighting.121
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Fig. 3 | Predicted distance distributions compared with true distances. Above, for CASP
target T0955 (L = 41): (a) Native structure showing distances under 8 Å from Cβ of residue
29. (b) Native inter-residue distances and (c) the mode of the distance predictions, highlighting
residue 29. (d) The predicted probability distributions for distances of residue 29 to all other
residues. The bin corresponding to the native distance is highlighted in red, 8 Å drawn in black.
True contacts’ distributions are plotted in green, non-contacts in blue. Below, for CASP target
T0990 (L = 552): (e) the mode of the predicted distance plotted against the true distance for
all residue pairs with distances ≤22 Å, excluding distributions with standard deviation > 3.5 Å.
The blue error bars show mean and standard deviation calculated for 1 Å bins. (f) The error of
the mode distance prediction vs the standard deviation of the distance distributions, excluding
pairs with native distances >22 Å). Mean and standard deviations are shown for 0.25 Å bins. The
distogram is shown in Figure 7 in Methods.
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Since all the terms in the combined potential Vtotal(φ,ψ) are differentiable functions of122

(φ,ψ), it can be optimised with respect to these variables by gradient descent. Here we use123

L-BFGS33. Structures are initialised by sampling torsion values from P (φi, ψi | S,MSA(S)).124

Figure 2c illustrates a single gradient descent trajectory minimising the potential, showing how this125

greedy optimisation process leads to increasing accuracy and large-scale conformation changes.126

Secondary structure is partly set by the initialisation, since some areas of secondary structure are127

predicted accurately, leading to low-variance torsion angle distributions. Overall accuracy (TM-128

score) improves quickly and after a few hundred steps of gradient descent has converged to a local129

optimum.130

We repeat the optimisation from sampled initialisations, leading to a pool of low potential131

structures from which further structure initialisations are sampled, with added backbone torsion132

noise (‘noisy restarts’), leading to more structures to be added to the pool. After only a few133

hundred cycles the optimisation converges and the lowest potential structure is chosen as the best134

candidate structure. Figure 2e shows the progress in the accuracy of the best-scoring structures over135

multiple restarts of the gradient descent process, showing that after a few iterations the optimisation136

has converged. Noisy restarts enable slightly higher TM-score structures to be found than when137

continuing to sample from the predicted torsion distributions (average of 0.641 vs 0.636 on our test138

set).139

A key component of AlphaFold’s overall accuracy is that accurate distance predictions con-140

vey more information about structure than contact predictions. Figure 3e shows that the predictions141

of distance correlate well with the true distance. It can be seen from Figure 3f that the network142

is also modelling the uncertainty in its predictions. When the standard deviation of the predicted143

distribution is low, the predictions are more accurate. This is also evident in the predicted distri-144

butions of Figure 3d, where more confident predictions of the distance distribution (higher peak145

and lower standard deviation of the distribution) tend to be more accurate, with the true distance146

close to the peak. Broader, less-confidently-predicted distributions still assign probability to the147

correct value even when it is not close to the peak. The high accuracy of the distance predictions148

and consequently the contact predictions (Table 1c) comes from a combination of factors in the de-149

sign of the neural network and its training, including predicting distances instead of contacts, data150

augmentation, feature representation, auxiliary losses, cropping and data curation. (See Methods151

section.)152

Figure 4a shows that the distogram accuracy (measured by distogram lDDT12, defined in153

Methods) correlates well with the TM-score of the final realised structures. Figure 4b shows the154

effect of changing the construction of the potential. Removing the distance potential entirely gives155

a TM-score of 0.266. Reducing the resolution of the distogram representation below 6 bins by av-156

eraging adjacent bins causes the TM-score to degrade. Removing the torsion potential, reference157

correction or Vscore2 smooth degrade the accuracy only slightly. A final ‘relaxation’ (side-chain pack-158

ing interleaved with gradient descent) with Rosetta10, using a combination of the Talaris2014159

potential and a spline fit of our reference-corrected distance potential adds side-chain atom coor-160
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Fig. 4 | TM-scores vs the accuracy of the distogram, and the TM scores’ dependency on
different components of the potential. (a) TM-score vs distogram lDDT12 with Pearson’s corre-
lation coefficients, for both CASP13 (n = 108) and test (n = 377) datasets. (b) Average TM-score
over the test set (n = 377) vs number of histogram bins used when downsampling the distogram,
compared with removing different components of the potential, or adding Rosetta relaxation.

dinates, and yields a small average improvement of 0.007 TM-score.161

We have shown that a carefully designed deep-learning system can provide accurate predic-162

tions of inter-residue distances and be used to construct a protein-specific potential which repre-163

sents protein structure. Furthermore we have shown that this potential can be simply optimised164

with gradient descent to achieve accurate structure predictions. While free modelling predictions165

only rarely approach the accuracy of experimental structures, the CASP13 assessment shows that166

the AlphaFold system achieves unprecedented free modelling accuracy and that this free modelling167

method can match the performance of template modelling approaches without using templates and168

is starting to reach the accuracy needed for biological understanding (see Methods). We hope that169

the methods we have described can be developed further and applied to benefit all areas of protein170

science with more accurate predictions for sequences of unknown structure.171
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1 Methods248

Figure 5 shows the steps involved in MSA construction, feature extraction, distance prediction,249

potential construction and structure realisation.250
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Data Our models are trained on structures extracted from the Protein Data Bank1. We extract251

non-redundant domains by utilising the CATH2 35% sequence similarity cluster representatives.252

This gives 31 247 domains, which are split into train, and test sets (29 427 and 1 820 proteins253

respectively) keeping all domains from the same homologous superfamily (H-level in the CATH254

classification) in the same partition. The CATH superfamilies of FM domains from CASP11 and255

CASP12 were also excluded from the training set. From the test set, we take a single domain per256

homologous superfamily to create the 377 domain subset used for the results presented here. We257

note that accuracies for this set are higher than for the CASP13 test domains.258

CASP13 submission results are drawn from the CASP13 results pages with additional re-259

sults shown for the CASP13 dataset for “all groups” chains, scored on CASP13 PDB files, by260

CASP domain definitions. Contact prediction accuracies are recomputed from the group 032 and261

498 submissions (as RR files), compared with the distogram predictions used by AlphaFold for262

CASP13 submissions. Contact prediction probabilities are obtained from the distograms by sum-263

ming the probability mass in each distribution below 8 Å.264

For each training sequence, we search for and align similar protein sequences in the Uni-265

clust303 dataset with HHblits4 and use the returned MSA to generate profile features with the266

position-specific substitution probabilities for each residue as well as covariation features — the267

parameters of a regularised pseudolikelihood-trained Potts model similar to CCMPred5. CCMPred268

uses the Frobenius norm of the parameters, but we feed both this norm (1 feature) as well as the269

raw parameters (484 features) into the network for each residue pair ij. In addition we provide270

the network with features explicitly representing gaps and deletions in the MSA. To make the net-271

work better able to make predictions for shallow MSAs, and as a form of data augmentation, we272

take a sample of half the sequences from the the HHblits MSA before computing the MSA-based273

features. Our training set contains 10 such samples for each domain. We extract additional profile274

features using PSI-BLAST6.275
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The distance prediction neural network was trained with the following input features (with276

number of features).277

• Number of HHblits alignments (1D scalar)278

• Sequence-length features: 1-hot amino acid type (21D), Profiles: PSI-BLAST (21D), HH-279

blits profile (22D), non-gapped profile (21D), HHblits bias, HMM profile (30D) Potts model280

bias (22D); Deletion probability (1D); residue index (integer index of residue number, con-281

secutive except for multi-segment domains, encoded as 5 least-significant bits and a scalar);282

• Sequence-length-squared features: Potts model parameters (484D, fitted with 500 iterations283

of gradient descent using Nesterov momentum 0.99, without sequence reweighting); Frobe-284

nius norm (1D); Gap matrix (1D)285

Distogram prediction The inter-residue distances are predicted by a deep neural network. The286

architecture is a deep two-dimensional dilated convolutional residual network. Xu et al.7 used287

a two-dimensional residual network preceded by one-dimensional embedding layers for contact288

prediction. Our network is two-dimensional throughout and uses 220 residual blocks8 with dilated289

convolutions9. Each residual block, illustrated in Figure 6 consists of a sequence of neural network290

layers10, interleaving three batchnorm layers; two 1×1 projection layers; a 3×3 dilated convolution291

layer and ELU11 nonlinearities. Successive layers cycle through dilations of 1, 2, 4, 8 pixels to292

allow propagation of information quickly across the cropped region. At the final layer, a position-293

specific bias was used, so the biases were indexed by residue-offset (capped at 32) and bin number.294

Fig. 6 | The layers used in one block of the deep residual convolutional network. The dilated
convolution is applied on reduced-dimensional features. The output of the block is added to the
representation from the previous layer. The residual network’s bypass connections allow gradients
to pass back through the network undiminished, permitting the training of very deep networks.

295

The network is trained with stochastic gradient descent using a cross-entropy loss. The target296

is a quantisation of the distance between the residues’ Cβ atoms (Cα for glycine). We quantise the297

range 2–22 Å into 64 equal bins. The input to the network consists of a two-dimensional array of298

features where each i, j feature is the concatenation of the 1-dimensional features for both i and j299
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as well as the two-dimensional features for i, j.300

Individual training runs were cross-validated with early stopping using 27 CASP11 FM do-301

mains as a validation set. Models were selected by cross-validation on 27 CASP12 FM domains.302

Neural network hyperparameters303

• 7× 4 Blocks with 256 channels, cycling through dilations 1, 2, 4, 8304

• 48× 4 Blocks with 128 channels, cycling through dilations 1, 2, 4, 8305

• Optimisation: Synchronized stochastic gradient descent306

• Batch size: batch of 4 crops on each of 8 GPU workers307

• 0.85 Dropout keep probability308

• Nonlinearity: ELU309

• Learning rate 0.06310

• Auxilliary loss weights: Secondary structure: 0.005; Accessible surface area: 0.001. These311

auxilliary losses were cut by a factor 10 after 100 000 steps.312

• Learning rate decayed by 50% at 150 000, 200 000, 250 000 and 350 000 steps.313

• Training time: about 5 days for 600 000 steps314

To constrain memory usage and avoid overfitting, the network is always trained on 64 × 64315

regions of the distance matrix, that is the pairwise distances between 64 consecutive residues and316

another group of 64 consecutive residues. For each training domain, the entire distance matrix is317

split into non-overlapping 64 × 64 crops. By training off-diagonal crops, the interaction between318

residues further apart than 64 residues can be modelled. Each crop consists of the distance matrix319

which represents the juxtaposition of two 64-residue fragments. Jones and Kandathil12 have shown320

that contact prediction needs only a limited context window. We note that the distance predictions321

close to the diagonal i = j, encode predictions of the local structure of the protein, and for any322

cropped region the distances are governed by the local structure of the two fragments represented323

by the i and j ranges of the crop. Augmenting the inputs with the on-diagonal 2D input features324

that correspond to both the i and j ranges provides additional information to predict the structure of325

each fragment and thus distances between them. It can be seen that if the fragment structures can326

be well predicted (for instance if they are confidently predicted as helices or sheets) then prediction327

of a single contact between the fragments will strongly constrain the distances between all other328

pairs329

Randomising the offset of the crops each time a domain is used in training leads to a form330

of data augmentation where a single protein can generate many thousands of different training331

examples. This is further enhanced by adding noise to the atom coordinates, proportional to the332

ground truth resolution leading to variation in the target distances. Data augmentation (MSA333

subsampling and coordinate noise), together with dropout, prevents the network from overfitting334

to the training data.335
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To predict the distance distribution for all L×L residue pairs, many 64× 64 crops are com-336

bined. To avoid edge effects, several such tilings are produced with different offsets and averaged337

together, with a heavier weighting for the predictions near the centre of the crop. To improve338

accuracy further, predictions from an ensemble of four separate models, trained independently339

with slightly different hyperparameters, are averaged together. Figure 7 shows an example of true340

distances (a) and the mode of the distogram prediction (b) for a three-domain CASP13 target.341
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Fig. 7 | True distances (a) and modes of the predicted distogram (b) for CASP13 target T0990.
CASP divides this chain into 3 domains as shown (D3 is inserted in D2) for which there are 39, 36
and 42 HHblits alignments respectively (from the CASP website).

Since the network has a rich representation capable of incorporating both profile and covari-342

ation features of the MSA, we argue that the network can be used to predict secondary structure343

directly. By mean- and max-pooling the 2D activations of the penultimate layer of the network344

separately in both i and j, we add an additional 1-dimensional output head to the network which345

predicts 8-class secondary structure labels as computed by DSSP13 for each residue in j and i.346

The resulting Q3 (distinguishing the three helix / sheet / coil classes) predictions’ accuracy is 84%347

which is comparable to the state-of-the-art14. The relative accessible surface area (ASA) of each348

residue can also be predicted.349

The 1-dimensional pooled activations are also used to predict the marginal Ramachandran350

distributions: P (φi, ψi | S,MSA(S)), independently for each residue, as a discrete probability351

distribution quantised to 10° (1296 bins). In practice during CASP13 we used distograms from a352

network that was trained to predict distograms, secondary structure and ASA with torsions from353

a second, similar network trained to predict distograms, secondary structure, ASA and torsions,354

since the former had been more thoroughly validated.355

Figure 8b shows that an important factor in the accuracy of the distograms (as has previ-356

ously been found with contact prediction systems) is Neff, the effective number of sequences in the357
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Potential Bins TM-score GDT TS lDDT RMSD (Å)
Full + relax 51/64 0.649 65.8 54.2 5.94
Full 51/64 0.642 65.0 53.9 5.91
W/o reference 51/64 0.632 64.3 50.0 6.64
W/o score2 smooth 51/64 0.641 64.8 53.7 5.93
W/o torsions 51/64 0.637 64.3 53.6 6.04
W/o distogram 51/64 0.266 29.1 19.1 14.88
Full 48/64 0.643 65.0 54.1 5.90
Full 24/32 0.643 65.0 53.8 5.89
Full 12/16 0.644 65.1 53.9 5.85
Full 6/8 0.641 64.6 53.7 5.94
Full 3/4 0.620 62.4 52.8 6.22
Full 2/3 0.576 58.2 49.3 8.38

c

Fig. 8 | Analysis of structure accuracies. (a) lDDT vs distogram lDDT12 (Defined below under
‘Accuracy’). The distogram accuracy predicts the realised structure’s lDDT (as well as TM-score
as shown in Fig. 4a) well for both CASP13 (n = 108) and test (n = 377) datasets. Shown
with Pearson’s correlation coefficients. (b) DLDDT12 against effective number of sequences in
the MSA (Neff) normalised by sequence length (n = 377). The number of effective sequences
correlates with this measure of distogram accuracy (r = 0.634). (c) Structure accuracy measures,
computed on the test set, for gradient descent optimisation of different forms of the potential.
Above: Removing terms in the potential, also showing the effect of following optimisation with
Rosetta relax. Bins shows the number of bins fitted by the spline before extrapolation and the
number in the full distribution. In CASP13 splines were fitted to the first 51 of 64 bins. Below,
reducing the resolution of the distogram distributions. The original 64-bin distogram predictions
are repeatedly downsampled by a factor 2 by summing adjacent bins, in each case with constant
extrapolation beyond 18 Å (the last 1

4
of the bins). The final row’s two-level potential, designed

to compare to contact predictions, is constructed by summing the probability mass below 8 Å and
between 8–14 Å, with constant extrapolation beyond 14 Å. The TM-scores in this table are plotted
in Figure 4 (b) Accuracy measures, computed on the test set (n = 377), for gradient descent
optimisation with differently constructed potentials. The TM-scores in this table are plotted in
Figure 4b.
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MSA15. This is the number of sequences found in the MSA, discounting redundancy at the 62%358

sequence identity level, which we then divide by the number of residues in the target, and is an359

indication of the amount of covariation information in the MSA.360

Distance potential The distogram probabilities are estimated for discrete distance bins, so to con-361

struct a differentiable potential the distribution is interpolated with a cubic spline. Because the final362

bin accumulates probability mass from all distances beyond 22 Å, and since greater distances are363

harder to predict accurately, the potential is only fit up to 18 Å (determined by cross-validation),364

with a constant extrapolation thereafter.365

To predict a reference distribution, a similar model is trained on the same dataset. The366

reference distribution is not conditioned on the sequence, but to account for the atoms between367

which we are predicting distances, we do provide a feature δαβ to indicate if the residue is glycine368

(Cα atom) or not (Cβ) and the overall length of the protein.369

A distance potential is created from the negative log likelihood of the distances, summed370

over all pairs of residues i, j.371

Vdistance(x) = −
∑
i,j, i6=j

logP (dij | S,MSA(S)) (1)

With a reference state this becomes the log likelihood ratio of the distances under the full condi-372

tional model and under the background model:373

Vdistance(x) = −
∑
i,j, i6=j

logP (dij | S,MSA(S))− logP (dij | length, δαβ) (2)

Torsions are modelled as a negative log likelihood under the predicted torsion distributions.374

Since we have marginal distribution predictions, each of which can be multimodal, it can be dif-375

ficult to jointly optimise the torsions. To unify all the probability mass, at the cost of modelling376

fidelity of multimodal distributions, we fit a unimodal von Mises distribution to the marginal pre-377

dictions. The potential is summed over all residues i.378

Vtorsion(φ,ψ) = −
∑
i

log pvonMises(φi, ψi | S,MSA(S)) (3)

Finally, to prevent steric clashes, a van der Waals term is introduced through the use of379

Rosetta’s Vscore2 smooth.380

Structure realisation by gradient descent To realise structures which minimise the constructed381

potential, we create a differentiable model of ideal protein backbone geometry, giving backbone382
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atom coordinates as a function of the torsion angles (φ,ψ): x = G(φ,ψ). The complete potential383

to be minimised is then*:384

Vtotal(φ,ψ) = Vdistance(G(φ,ψ)) + Vtorsion(φ,ψ) + Vscore2 smooth(G(φ,ψ)). (4)

Since every term in Vtotal is differentiable with respect to the torsion angles, given an initial set of385

torsions φ,ψ which can be sampled from the predicted torsion marginals, we can minimise Vtotal386

using a gradient descent algorithm, such as L-BFGS16. The optimised structure is dependent on the387

initial conditions, so we repeat the optimisation multiple times with different initialisations. A pool388

of the 20 lowest-potential structures is maintained and once full, we initialise 90% of trajectories389

from those with 30° noise added to the backbone torsions (the remaining 10% being sampled from390

the predicted torsion distributions). In CASP13 we made 5000 optimisation runs for each chain.391

Figure 2 shows the change in TM-score against the number of restarts. Since longer chains take392

longer to optimise, this work load was balanced across (50+L)/2 parallel workers. Figure 9 shows
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Fig. 9 | TM-score vs per-target computation time computed as an average over the test set
(n = 377). Full optimisation with noisy restarts (orange) is compared with initialisation from
sampled torsions (blue). Computation is measured as the product of the number of (CPU-based)
machines and time elapsed and can be largely parallelised. Longer targets take longer to optimise.

393

that this is achieved with a moderate computation budget, which can be parallelised over multiple394

machines.395

Accuracy We compare the final structures to the experimentally determined structures to measure396

their accuracy using metrics such as TM-score, GDT TS17 and RMSD. All of these accuracy mea-397

sures require geometric alignment between the candidate structure and the experimental structure.398

An alternative accuracy measure which requires no alignment is the Local Distance Difference399

Test (lDDT18) which measures the percentage of native pairwise distances Dij under 15 Å, with400

sequence offsets ≥ r residues, that are realised in a candidate structure (as dij) within a tolerance401

*While there is no guarantee that these potentials have equivalent scale, scaling parameters on the terms were
introduced and chosen by cross-validation on CASP12 FM domains. In practice equal weighting for all terms was
found to lead to the best results.
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of the true value, averaging across tolerances of 0.5, 1, 2 and 4 Å (without stereochemical checks).402

lDDTr =
100

4L

∑
t∈{0.5,1,2,4}

L∑
i=1

∑
j,|i−j|≥r,Dij<15 1(|Dij − dij| < t)∑

j,|i−j|≥r,Dij<15 1
. (5)

Since the distogram predicts pairwise distances, we can introduce distogram lDDT (DLDDT),403

a measure like lDDT computed directly from the distograms’ probabilities.404

DLDDTr =
100

4L

∑
t∈{0.5,1,2,4}

L∑
i=1

∑
j,|i−j|≥r,Dij<15 P (|Dij − dij| < t | S,MSA(S))∑

j,|i−j|≥r,Dij<15 1
(6)

Since distances between residues nearby in the sequence are often short, easier to predict and405

are not critical in determining the overall fold topology, we set r = 12, considering only those406

distances for residues with a sequence separation ≥ 12. Since we predict Cβ distances, for this407

work we compute both lDDT and DLDDT using the Cβ distances.408

Full chains without domain segmentation Parameterising proteins of length L by two torsion409

angles per residue, the dimension of space of structures grows as 2L, so searching for structures410

of large proteins becomes much harder. Traditionally this problem is addressed by splitting longer411

protein chains into pieces, termed domains, which fold independently. However, the problem of412

domain segmentation from the sequence alone is itself difficult and error-prone. For this work, we413

avoided domain segmentation and folded entire chains. Typically multiple sequence alignments414

are based upon a given domain segmentation, but we used a sliding windows approach, computing415

a full-chain multiple sequence alignment to predict a baseline full-sequence distogram. We then416

compute MSAs for subsequences of the chain, trying windows of size 64, 128, 256 with offsets417

at multiples of 64. Each of these MSAs gives rise to an individual distogram corresponding to an418

on-diagonal square of the full-chain distogram. We average all these distograms together, weighted419

by the number of sequences in the MSA to produce an average full-chain distogram which is more420

accurate in regions where many alignments can be found.421

CASP13 results In CASP13 the 5 AlphaFold submissions were from 3 different systems, all us-422

ing potentials based on the neural network distance predictions. Before T0975, two systems based423

on simulated annealing and fragment assembly (and using 40 bin distance distributions) were used.424

From T0975 on, newly trained 64-bin distogram predictions were used and structures were gen-425

erated by the gradient descent system described here (3 independent runs) as well as one of the426

fragment assembly systems (5 independent runs). 5 submissions were chosen from these 8 struc-427

tures (the lowest potential structure generated by each independent run) with the first submission428

(‘top-1’) being the lowest-potential structure generated by gradient descent. The remaining four429

submissions were the four best other structures, with the fifth being a gradient descent structure if430

none had been chosen for position 2, 3 or 4. All submissions for T0999 were generated by gradient431

descent. Figure 10a shows the methods used for each submission, comparing with ‘back-fill’ struc-432

tures generated by a single run of gradient descent for targets before T0975. Table 10b shows that433
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Method FM TBM/FM TBM All
Top-1 58.0 68.1 76.2 69.9
Best-of-5 62.6 73.6 78.6 73.2
1× gradient descent 58.4 71.6 76.3 70.4
1× fragment assembly 54.3 69.9 74.5 68.0
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Fig. 10 | AlphaFold CASP13 results. (a) The TM-score for each of the 5 AlphaFold CASP13
submissions are shown. Simulated annealing with fragment assembly entries are shown in blue.
Gradient-descent entries are shown in yellow. Gradient descent was only deployed for targets
T0975 and later, so to the left of the black line we also show the results for a single, ‘back-fill’,
run of gradient descent for each earlier target using the deployed system. T0999 (1589 residues)
was manually segmented based on HHpred19 homology matching. (b) Average TM-scores of
the AlphaFold CASP13 submissions (n = 104 domains), comparing the first model submitted,
the best-of-5 model (submission with highest GDT), a single run of full-chain gradient descent
(a CASP13 run for T0975 and later, back-fill for earlier targets) and a single CASP13 run of
fragment assembly with domain segmentation (using a gradient descent submission for T0999). (c)
Assessors’ formula standardised (z) scores of GDT TS + QCS20, best-of-5 for CASP FM (n = 31)
and FM/TBM (n = 12) domains comparing AlphaFold with the closest competitor (group 322),
coloured by domain category.
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the gradient descent method deployed later in CASP performed better than the fragment assembly434

method, in each category. Figure 10c compares the accuracy of the AlphaFold submissions for FM435

and FM/TBM domains with the next best group 322. For the CASP13 assessment full chains were436

relaxed with Rosetta relax with a potential of VTalaris2014 + 0.2Vdistance (weighting determined by437

cross-validation) and submissions from all the systems were ranked based on this potential.438

Biological relevance There is a wide range of uses of predicted structures, all with different ac-439

curacy requirements, from generally understanding the fold shape to understanding detailed side-440

chain configurations in binding regions. Contact predictions alone can guide biological insight21,441

for instance targeting mutations to destabilise the protein. The accuracy of the contact predictions442

shown in Table 1c indicates that the AlphaFold contact predictions exceed the state of the art. Here443

we present further results which indicate that AlphaFold’s accuracy improvements lead to more ac-444

curate interpretation of function; better interface prediction for protein-protein interaction; better445

binding pocket prediction and improved molecular replacement in crystallography.446
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Fig. 11 | Correct fold identification by structural search in CATH. For each of the FM or
TBM/FM domains, the top-1 submission and ground-truth are compared to all 30 744 CATH S40
non-redundant domains with TM-align22. For the 36 domains where there is a good ground-truth
match (score> 0.5), we show the percentage of decoys where a domain with the same CATH code
(in red, CA in green. CAT results are close to CATH results) as the top ground-truth match is in
the at-most top-k matches with score > 0.5. Curves are shown for AlphaFold and the next-best
group (322). AlphaFold predictions determine the matching fold more accurately. Determination
of the matching CATH domain can give insight into the function of a new protein.

Often protein function can be inferred by finding homologous proteins of known function.447

Figure 11 shows that AlphaFold’s FM predictions give greater accuracy in structure-based search448

for homologous domains in the CATH database.449

Protein-protein interaction is an important domain for understanding protein function that450

has hitherto largely been limited to template-based models because of the need for high accuracy451

predictions, though there has been moderate success23 in docking with predicted structures up452

to 6 Å RMSD. Figure 12 shows that AlphaFold’s predictions improve accuracy in the interface453
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Fig. 12 | Accuracy of predictions for interfaces. For the five all-groups heterodimer CASP13
targets the full-atom RMSDs of the interface residues (residues with a ground truth inter-chain
heavy atom distance < 10 Å) are computed for all groups’ chain submissions, relative to the target
complex. Results > 8 Å are not shown. AlphaFold achieves consistently high accuracy interface
regions and for 4 out of 5 targets predicts both chains’ interfaces below < 5 Å.

regions of chains in hetero-dimer structures and are likely better candidates for docking, though454

docking did not form part of the AlphaFold system and all submissions were for isolated chains455

rather than complexes.456

Further evidence of AlphaFold reaching accuracy sufficient for biological relevance is shown457

in Figure 13. The images show the pocket in T1011 indicating that the accuracy gain in Al-458

phaFold’s structure prediction can leads to more accurate prediction of pocket geometry and thus459

the binding of ligands.460

So far only template-based predictions have been able to deliver the most accurate predic-461

tions. While AlphaFold is able to match template-based modelling without using templates, and462

in some cases outperform other methods (e.g. T0981-D5, 72.8 GDT TS, and T0957s1-D2, 88.0463

GDT TS, two TBM-hard domains where AlphaFold’s top-1 model is 12 GDT TS better than any464

other top-1 submission) accuracy for FM targets still lags that for TBM targets and can still not465

be relied upon for detailed understanding of hard structures. In an analysis of the performance of466

CASP13 TBM predictions for Molecular Replacement, Read et al.25 reported that the AlphaFold467

predictions (raw coordinates, without B-factors) led to a marginally greater log-likelihood gain468

(LLG) than those of any other group, indicating that these improved structures can assist in phas-469

ing for X-ray crystallography.470

Interpretation of distogram neural network We have shown that the deep distance prediction471

neural network achieves high accuracy, but we would like to understand how the network arrives at472

its distance predictions, and in particular to understand how the inputs to the model affect the final473
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a b c

Fig. 13 | Ligand pocket visualizations for T1011 PDB 6M9T: EP3 receptor bound to
misoprostol-FA24 (a) the native structure showing the ligand in a pocket. (b) AlphaFold’s sub-
mission 5 (78.0 GDT TS) made without knowledge of the ligand shows a pocket more similar
to the true pocket than that of (c) the best other submission (322 model 3, 68.7 GDT TS). Both
submissions are aligned to the native using the same subset of residues from the helices close to
the ligand pocket and visualized with the interior pocket together with the native ligand position.

prediction. This might lead to understanding of the folding mechanisms or suggest improvements474

to the model. However, deep neural networks are complex non-linear functions of their inputs, and475

so this attribution problem is difficult, under-specified and an on-going topic of research. Even476

so, there are a number of methods for such analysis: here we apply Integrated Gradients [26] to477

our trained distogram network to indicate the location of input features which affect the network’s478

predictions of a particular distance.479

Given the expected value of the distance between any two residues I and J , dI,J(x), we can480

consider its derivatives with respect to the input features xi,j,c, where i and j are residue indices and481

c is the feature channel index. The attribution function, as calculated using Integrated Gradients,482

of the expected distance between residues I and J with respect to the input features is then defined483

as484

SI,Ji,j,c = (xi,j,c − x′c)
∫ 1

α=0

dα
∂dI,J(αx+ (1− α)x′)

∂xi,j,c
, (7)

s.t.
∑
i,j,c

SI,Ji,j,c = dI,J(x)− dI,J(x′), (8)

where x′ is a reference set of features; in this case we average the input features spatially:485

x′c =
1

N2

N,N∑
i=0,j=0

xi,j,c. (9)

The derivatives of d can be calculated using backpropagation on the trained distogram network,486

and the integral over α is approximated as a numerical summation.487
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a

Fig. 14 |Attribution map of distogram network The contact probability map of T0986s2, and the
summed absolute value of the Integrated Gradient,

∑
c |S

I,J
i,j,c|, of the input 2D features with respect

to the expected distance between five different pairs of residues (I, J): (1) a helix self-contact, (2)
a long-range stand-strand contact, (3) a medium-range strand-strand contact, (4) a non-contact and
(5) a very long-range strand-strand contact. Each pair is shown as two red dots on the diagrams.
Darker means higher attribution weight.
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1: (20,24) 2: (30,65)

3: (65,85) 4: (30,100) 5: (8,127)

Fig. 15 | Attribution shown on predicted structure. For T0986s2 (TM-score 0.8), the top 10
input pairs, including self-pairs, with highest attribution weight for each of the five output pairs
shown in Figure 14, are shown as lines (or spheres, for self-pairs) coloured by sensitivity, lighter
green is more sensitive, and the output pair shown as a blue line.
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In Figure 14, plots of summed absolute Integrated Gradient,
∑

c |S
I,J
i,j,c|, are shown for se-488

lected I, J output pairs in T0986s2 and in Figure 15, the top-10 highest attribution input pairs for489

each output pair are shown on top of AlphaFold’s top-1 predicted structure. The attribution maps490

are sparse and highly structured, closely reflecting the predicted geometry of the protein. For the491

four in-contact pairs presented (1, 2, 3, 5), all the highest attribution pairs are pairs within or be-492

tween the secondary structure that one or both the output pair are members of. In (1) the helix493

residues are important as well as connections between the strands which follow either end of the494

helix, which might indicate strain on the helix. In (2) all the most important residue pairs connect495

the same two strands, whereas in (3) a mix of inter-strand pairs and strand residues are most salient.496

In (5) the most important pairs involve the packing of nearby secondary structure elements to the497

strand and helix. For the non-contacting pair (4), the most important input pairs are the residues498

that are geometrically between I and J in the predicted protein structure. Furthermore, most of the499

high attribution input pairs are themselves in contact.500

Since the network is tasked with predicting the spatial geometry, with no structure available501

at the input, these patterns of interaction indicate that the network is using intermediate predictions502

to discover important interactions and channelling information from related residues to refine the503

final prediction.504
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7 Code availability584

Upon publication we will make available source code for the distogram and torsion predictions,585

together with neural network weights and input data for the CASP13 targets.586

We make use of several open-source libraries to conduct our experiments, particularly HH-587

blits1, PSI-BLAST2 and the machine learning framework TensorFlow§ along with the TensorFlow588

library Sonnet¶ which provides implementations of individual model components3. We also used589

Rosetta4 under license.590

8 Data availability591

The following public datasets were used in this work:592

• PDB 2018-03-15593

• CATH 2018-03-16594

• Uniclust30 2017-10595

• PSI-BLAST nr dataset (as of 2017-12-15)596

We will make available our train/test split (CATH domain codes).597

9 Extended data598

The following tools and data set versions were used for the CASP system and for subsequent599

experiments.600

• PDB 2018-03-15601

• CATH 2018-03-16602

• HHblits based on version 3.0-beta.3 (3 iterations, E-value 1e-3)603

• HHpred web server604

• Uniclust30 2017-10605

• PSI-BLAST version 2.6.0 nr dataset (as of 2017-12-15) (3 iterations, E-value 1e-3)606

• SST web server (March 2019)607

• BioPython v1.65608

• Rosetta v3.5609

• PyMol for structure visualisation.610

• TM-align 20160521611

§https://github.com/tensorflow/tensorflow
¶https://github.com/deepmind/sonnet

28

https://github.com/tensorflow/tensorflow
https://github.com/deepmind/sonnet

