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Abstract

We describe AlphaFold, the protein structure prediction system that was entered by the

group A7D in CASP13. Submissions were made by three free-modeling (FM) methods

which combine the predictions of three neural networks. All three systems were guided by

predictions of distances between pairs of residues produced by a neural network. Two sys-

tems assembled fragments produced by a generative neural network, one using scores

from a network trained to regress GDT_TS. The third system shows that simple gradient

descent on a properly constructed potential is able to perform on par with more expensive

traditional search techniques and without requiring domain segmentation. In the CASP13

FM assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2

for the next closest group (an average GDT_TS of 61.4). The system produced high-

accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 FM domains.

Despite not explicitly using template information, the results in the template category were

comparable to the best performing template-based methods.
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1 | INTRODUCTION

In this paper, we describe the entry from team A7D to the “human”

category in the 13th Critical Assessment of Protein Structure Prediction

(CASP13). The A7D system, called AlphaFold, used three deep-learn-

ing-based methods for free modeling (FM) protein structure prediction,

without using any template-based modeling (TBM). These methods

were based around combinations of three neural networks:

1. To predict the distance between pairs of residues within a protein.

2. To directly estimate the accuracy of a candidate structure (termed

the GDT-net).

3. To directly generate protein structures.

The distance predictions and the accuracy predictions were each

used to define a potential. We developed a simulated annealing system

to optimize these potentials, by assembly of fragments generated by the

structure generation network, augmented to track and reuse fragments

from low-potential structures. It was found that the distance-based
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potential could also be directly optimized by gradient descent. The A7D

submissions were generated by three methods which combined these

algorithms:

A. Memory-augmented simulated annealing with neural fragment

generation with GDT-net potential.

B. Memory-augmented simulated annealing with neural fragment

generation with distance potential.

C. Repeated gradient descent of distance potential.

The main conclusions of this work are that the three systems per-

formed similarly, with the GDT-net (A) and gradient descent (C) methods

giving small improvements over B. Since all systems relied heavily on dis-

tance predictions based on coevolutionary data, we believe that poten-

tials based on these predictions were essential to the accuracy of our

structure predictions. The good results that A7D obtained in the assess-

ment were due to the fact that deep learning allows extracting features

from the data without making heuristic assumptions about the data.

For example, none of the systems we developed uses the concept of

secondary structure at inference time, but rather we model distances

and angles and learn probability distributions for these which implicitly

model secondary structure.

2 | METHODS

In this section, we give more details on the components of the three

systems outlined above, and in particular of the three neural networks

that were trained for distance prediction, structure generation, and

structure scoring.

2.1 | Distance prediction

At the centre of all three methods used in CASP13 is a neural network

(1) trained to predict the distances dij between the β-carbon atoms of pairs

of residues. Contact prediction has been extensively used in structure pre-

diction16,20,29,31 but previous work has also made residue distance

predictions,3,35 and these were used for structure prediction in CASP13

by other groups in distance geometry approaches.10,32 While in some

cases, these distances are highly constrained by secondary structure or

clear coevolutionary signals, in most cases, they will be uncertain. In order

to model this uncertainty, the network predicts discrete probability distri-

butions P dij j S,MSA Sð Þ� �
, given a sequence S and its multiple sequence

alignment MSA Sð Þ. These distance distributions are modeled with a

softmax distribution for distances in the range 2 to 22Å split into

64 equal bins. The network is trained to predict distances between

two 64-residue fragments of a chain, giving a probabilistic estimate of

a 64×64 region of the distance map. These regions are tiled together

to produce distance predictions for the entire protein. The distribu-

tions are predicted with a deep, dilated residual convolutional net-

work13 described in detail in another paper.24 The network consists of

220 two-dimensional (2D) residual blocks with 128 channels and

dilated 3 ×3 convolutions, elu nonlinearity with dropout and batch

normalization.

A distance potential is created from the negative log likelihood of

the distances, summed over all pairs of residues i,j.

Vdistance xð Þ= −
X

i, j, i 6¼ j

logP dij j S,MSA Sð Þ� � ð1Þ

With a reference state,27 this becomes the log likelihood ratio of

the distances under the full conditional model and under a background

model predicting the distance distributions P(dij j length) independent
of sequence (trained with the same network architecture on the same

set of proteins but without sequence or MSA input features):

Vdistance xð Þ=
X

i, j, i6¼ j

− logP dij j S,MSA Sð Þ� �

− logP dij j length
� � ð2Þ

This distance-based potential is used for our fragment assembly

system and our gradient descent system. We substitute it with a

learned potential in the GDT-net model of Section 2.2.

2.2 | GDT-net

In this system, we train a neural network, which we call GDT-net (2),

to predict the GDT_TS33 of a candidate structure. We then use the

GDT-net's accuracy prediction as a scoring function to be optimized

by simulated annealing as described in Section 2.3.

The GDT-net is trained in a distributed and continuous setting,26

summarized in Figure 1, in which actors generate candidate structures

by running simulated annealing with the latest GDT-net for all pro-

teins in the training set while learners train the GDT-net on candi-

dates sampled from the actors.

The input of the GDT-net consists of N × N MSA features similar

to the ones used for distance prediction in Section 2.1, the contact

map prediction obtained by collapsing the predicted distance distribu-

tions into two bins, and geometric features representing the current

candidate structure, in the form of the N × N distance matrix and con-

tact map (for both Cα and Cβ atoms) of the candidate structure, as

well as the Cβ coordinates and sine/cosine of the torsion angles.

The GDT-net architecture begins with a deep 2D resnet stack, simi-

lar to the one used for the distance predictions, but with strided convo-

lutions to progressively reduce the resolution (18 residual blocks with

3 × 3 dilated convolutions and up to 64 channels per block). After the

resnet stack, mean pooling is applied to obtain a single vector whose

dimension is agnostic to the number of residues. Pooling is followed by

a softmax with 100 bins for the range [0,100]. The network is trained

to minimize negative cross entropy of the softmax and the quantized

GDT_TS of the candidate with respect to the true structure. During

simulated annealing, we use the negative mean of the softmax distribu-

tion (with a temperature of 0.3) as a scoring function.

For generating the candidate structure data, we use about 4000

actors that continuously sample from the training set, fetch the latest
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GDT-net checkpoint (starting with randomly initialized weights), and

run simulated annealing with it, for 40 000 steps, recording candidate

structures every 1000 steps. For training the network, we use asyn-

chronous SGD with momentum with batch size 1 on 16 GPUs, sam-

pling uniformly from all the candidate structures. We decay the

learning rate every 10 M steps.

2.3 | Memory-augmented simulated annealing

Twoout of the threemethods (A andB) used a simulated annealing17 based

search method. Fragment-insertion-based simulated annealing has previ-

ously been used6,15,27,34 to predict protein structure. A simulated annealing

step consists of inserting a structural fragment into an existing structure

and accepting or rejecting the new structure based on the Metropolis-

Hastings acceptance criteria12,19 and an associated scoring function.

Figure 2 shows an overview of the simulated annealing search sys-

tem, which consists of a pool of backbone optimizing simulated

annealing workers, a pool of side-chain optimization and full-atom

scoring workers, as well as three databases: a local per-worker frag-

ment library, a global backbone-only structural library, and a global

full-atom structural library. The details of these are discussed below.

A few modifications are made to a standard simulated annealing

setup. When performing multiple simulated annealing runs, it can be

seen that alternative predicted structures can be correct at different

positions in the protein. In order to combine these structures, we periodi-

cally update the local fragment database using low-scoring refragmented

structures25 found across all the simulated annealing workers. The local

fragment database is initialized, and periodically updated, with fragments

from the model described in Section 2.4.

Another observation is that often it is significantly faster to score a

backbone-only structure, than it is to score a full-atom model, as the full-

atom model requires placing all the side-chain atoms. To get the best of

both worlds, a separate set of workers exists, whose job is to continu-

ously take the best backbone-only structures, fit the side-chains using

the Rosetta relax protocol,5 and perform full-atom scoring on these

structures. These structures are used in two ways. Firstly, the final struc-

ture is selected based on the full-atom scores. Secondly, these structures

are refragmented and reused in the simulated annealing workers, biasing

selection towards fragments from good full-atom structures.

There are several hyperparameters in the simulated annealing

such as start temperature, run length, and proportion of fragments

from the fragment model. Along with structure and score, we also

store these hyperparameters in the global databases. When each

worker restarts simulated annealing, it samples the hyperparameters

proportional to their associated structure scores. This leads to auto-

matic optimization of the hyperparameters over time in a similar way

to previous work on population-based training of neural networks.14

Two versions of simulated annealing were run in CASP13; these

differ in the potential used for the backbone only part of the algo-

rithm. The first (A) uses the GDT-net described in Section 2.2, and the

second (B) uses the distance potential described in Section 2.1 to

score the structures. Both methods use Talaris201421 combined with

the distance potential for the Rosetta relax5 protocol, and in final

decoy selection (see Section 2.7).

2.4 | Structure prediction

The third neural network (3) was designed to make direct structure

predictions using an end-to-end trained generative model of protein

F IGURE 1 A schematic of
the GDT-net system (A). Feature
extraction stages are shown in
yellow, structure-prediction
neural network in green, and
structure realization in blue

F IGURE 2 An overview of the
simulated annealing framework. A pool of
workers runs simulated annealing to

optimize the backbone structure. Another
pool refines these structures to add side-
chain atoms. Fragments from these full-
atom structures are reused in simulated
annealing in a continuous fashion
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backbone torsion angles based on the work of Gregor et al.11 Similar to

that work, our network, shown in Figure 3, is a convolutional, auto-

regressive latent model; the key difference is that we need the genera-

tive model to be conditioned on the sequence and MSA features. The

2D conditioning data are fed through a 2D residual network (five blocks

with 32 channels) and then mean pooled along one dimension before

being passed into a one-dimensional (1D) convolutional LSTM encoder

(256 channels) which parameterizes the prior for a set of Gaussian-

distributed latent variables. The latents (two per angle) are decoded by a

1D convolutional LSTMdecoder which over 128 iterations incrementally

generates a 1D canvas whose values are used to generate the parame-

ters of independent von Mises distributions which describe the back-

bone torsion angles. The model is trained with a variational upper bound

on the true log-likelihood as is usual in variational autoencoders.23While

this neural network is an end-to-end model of protein structure

(an alternative formulation of which has been proposed in concurrent

work1), it was found to model local structure much better than long-

range interactions, so was not effective for sampling conformations of

entire domains.We trained themodel on crops of the protein backbones

from our training set.While longer crops permit richer modeling of larger

fragments, smaller crops allowed us to generate more independent train-

ing examples and thus avoid overfitting. We found that training on crops

of size 32 led to the best compromise between these two effects. Train-

ing used the Adam optimizer and a learning rate of 10−4.

Most fragment assembly methods construct fragments by looking

up likely fragments based on a database of structures or angles

extracted from the Protein Data Bank,15,27 but previous work has also

investigated generative4 and neural-network36 models of protein struc-

ture. In this work, we sampled from the generative network to create

libraries of nine-residue fragments which were used in the memory-

augmented simulated annealing of Section 2.3.

2.5 | Repeated gradient descent

As an alternative to simulated annealing, we created a smooth com-

bined potential by adding a torsion potential and Rosetta's score2 to a

spline approximation to the log probability of the distance predictions

from network 1, (equal weights, as determined by cross validation,

were used for the potentials) and used gradient descent (L-BFGS18) to

directly optimize this combined potential with respect to the structure

torsion angles. While gradient descent has previously been used to

locally minimize the energy of structures predicted from backbone

sampling (as in Rosetta's relax protocols, for example5), here, we use it

to establish backbone structure. Repeated optimization (5000 repeats)

from initial torsion angles sampled from predicted torsion angle distri-

butions was found to converge quickly. Full details of the repeated

gradient descent system (C) can be found in another paper.24

2.6 | Domain segmentation

Simulated annealing is computationally expensive to run on long protein

chains, particularly when using the GDT-net scoring. For this reason, we

used a simple domain segmentation approach to partition a chain into

pieces which are modeled independently in parallel. Our approach is

based on assuming that domains will have many interresidue contacts

whereas there will be fewer contacts between domains. We consider all

possible partitions of a chain into two or three segments and score each

segmentation, similar to the “Domain Guess by Size” method.30 The

score is based on the full-chain contact map from our distance prediction

network and we use four more pieces of information:

• The probability P(n | L) of having n domains in a chain of length L.

• The probability P(l) of having a domain of length l.

• The mean number of contacts per residue for a domain of length

l, μl.

• The standard deviation of the number of contacts per residue for a

domain of length l, σl.

These data are all obtained by collecting statistics from PDB9 and

CATH.7 The last two pieces of information are used to parametrize

the probability p(d | l) of having a certain number of contacts d in a

domain of length l as a Gaussian distribution. Note that having the

F IGURE 3 A schematic of the
fragment network 3. The blue parts
of the network describe the
conditioning network, the purple
parts are the encoding network used
to approximate the posterior, and the
orange parts are the generative
decoder
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full-chain contact map makes it straightforward to extract the average

number of contacts per residue of a particular segmentation by

summing the on-diagonal blocks of the contact map prediction and

dividing by the length of each block. This calculation yields the

expected number of contacts dl. With this information, we can score

a particular segmentation of a protein of length L into n segments of

length {l1,…,ln} as follows:

S L,n, l1,…lnf gð Þ= logP n j Lð Þ+
Xn

i=1

logP lið Þ+ logp di j lið Þ: ð3Þ

The most likely two-segment partition and the most likely three-

segment partition are used for structure generation, along with a

single-segment for chains shorter than 400 residues. For each seg-

mentation proposal, the domains are folded independently, with

domain-specific distance predictions. The domain structures are com-

bined with simulated annealing optimizing the full-chain potential over

the torsions at the boundary. The best full-chain structures are then

relaxed with Rosetta (using Rosetta's Talaris2014 score plus the full-

chain distogram potential weighted 1:0.02, as found through cross

validation) and the lowest-potential chains considered in decoy

selection.

2.7 | Decoy selection

For all but five of the targets in CASP13, we used exactly two of the

three folding systems. Before target T0975, the two systems based on

simulated annealing and fragment assembly (and using 40-bin distance

distributions) were used (five independent runs with the distance poten-

tial, three with the GDT-net). From T0975 on, a newly trained 64-bin dis-

tance prediction network was used and structures were generated by

the repeated gradient descent system (three independent runs) as well

as the distance-potential fragment assembly system (five independent

runs), while the GDT-net model was retired. Five submissions were cho-

sen from the eight structures (the lowest potential structure generated

by each independent run) with the first submission (“top-1”) being the

lowest-potential structure generated by GDT-net (pre-T0975) or gradi-

ent descent (thereafter). The remaining four submissions were the four

best other structures, with the fifth being a gradient descent structure/

GDT-net if none had been chosen for position 2, 3, or 4. All submissions

for T0999 were generated by gradient descent.

F IGURE 4 Number of FM + FM/TBM domains (out of 43) solved
to a GDT_TS threshold for all groups in CASP13

F IGURE 5 A7D CASP13 submission accuracies by domain. The GDT_TS for each of the five A7D CASP13 submissions are shown.
Submissions are colored by method with fragment assembly submissions (B) colored red, GDT-net submissions (A) colored green, and gradient
descent submissions (C) colored blue. T0999 (1589 residues) was manually segmented based on HHpred28 homology matching
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2.8 | Data

All the neural network models are trained on structures extracted

from the PDB.9 We extract nonredundant domains by utilizing the

CATH7 35% sequence similarity cluster representatives (CATH ver-

sion: 2018-03-16). This gives 31 247 domains, which are split into

train, and test sets (29 427 and 1820 proteins, respectively) keeping

all domains from the same homologous superfamily (H-level in the

CATH classification) in the same partition.

MSAs were generated using HHblits,22 and from these profiles,

1D features were extracted. Potts models were fitted on the MSAs

using pseudolikelihood8 to generate 2D coevolutionary features. PSI-

BLAST2 profiles were also used in the distance prediction network.

3 | RESULTS

Figure 4 shows the FM performance of the A7D system, showing the

number of FM (FM + TBM/FM) domains (out of 43) solved to a given

GDT_TS accuracy, which shows that the A7D system is particularly

adept at producing 50-70 GDT_TS structures.

Figure 5 shows the GDT_TS for each CASP13 submission, colored

by the method used to generate it, in the order submitted. Table 1

shows the average performance of the different methods for the tar-

gets where more than one method was used. Two direct comparisons

(B vs C and B vs A) can be made—fragment assembly after T0975 with

gradient descent for that period (both using the distance potential)

and, before T0975, distance potential with the GDT-net scoring (both

using fragment assembly). From this comparison, it is apparent that

the GDT-net and gradient descent methods perform slightly better

than distance potential fragment assembly. We suspect that the GDT-

net performed better as it was able to look at the likelihood of the

whole structure, as opposed to just using the marginal probabilities in

the distance predictions. The gradient descent approach is domain-

free, and we suspect this is one of the reasons it performed better.

Another interesting observation from Figure 5 is that the fragment

assembly method, despite producing similar average results, generates

a greater variety of scores than the gradient descent method for each

target.

Figure 6 shows that, as expected, the system produces more accu-

rate structures when the multiple sequence alignments are deeper,

because of the distance predictor's dependence on coevolutionary

information. Since the system does not search for templates, the per-

formance on TBM targets is often worse than that for FM targets with

similar Neff. Performance on TBM targets with few alignments can

be much worse than for systems which explicitly use templates

(eg, T0973-D1 which was over 40 GDT_TS worse than the best

TABLE 1 A7D CASP13 accuracies by method. Average GDT_TS
scores of the A7D CASP13 submissions broken down by method.
Since the methods used changed after T0975, we show the means for
these two sets separately. Domains in which only one method was
used have been excluded to make the numbers comparable

Mean GDT_TS for targets

Method
Before
T0975

T0975
onwards

Fragment assembly with GDT-net 63.8 N/A

Fragment assembly with distance

potential

62.4 63.4

Gradient descent on distance potential N/A 64.4

F IGURE 6 The TM-score of the A7D submissions plotted against
the length-normalized number of effective sequence alignments
found (Neff). Each domain decoy is colored by difficulty category, with

a shape indicating the method by which it was generated

F IGURE 7 Accuracy curves for three domains of T0990. Curves show the fraction of residues that are correct within a given alignment
threshold. All groups' submissions are shown with one curve per submission (396, 396, and 397 models, respectively), highlighting the five A7D
submissions in magenta. Graphs from predictioncenter.org
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submission). Interestingly, the low-alignment designed protein T0955-D1

was solved to high accuracy (GDT_TS 88.4) despite having no alignments,

presumably because of its short length and because the design process

ensured it had highly typical structure. The raw data for Figures 5 and 6

are provided in the Supplementary information.

The A7D system was able to generate good structures for several

hard targets, for instance, the three-domain protein T0990, shown in

Figure 7. In this case, domain D3 is inserted into domain D2, so our

domain segmentation algorithm, which only considers single-segment

domains, was unable to generate a correct segmentation. It can be

seen that the gradient descent method which does not use domain

segmentation produced better results than the fragment assembly

method. For T0980 s1-D1, on the other hand, fragment assembly pro-

duced better models than the repeated gradient descent, which failed

to correctly assemble the beta sheet.

4 | DISCUSSION

In this work, we have presented the structure prediction system

entered by A7D in the CASP13 assessment and detailed the three

deep-learning components which were combined in three different

approaches. We have shown in this blind evaluation that deep-learn-

ing-based methods have excellent performance across a range of tar-

gets, including novel folds. All approaches rely heavily on a deep

distance prediction neural network which uses coevolution informa-

tion as inputs. We found that all three approaches performed simi-

larly, but having the diversity of the different methods generating

submissions for each target was useful. Despite the differences in the

structure assembly methods, we did not find significant differences in

accuracy arising from native contact order or other structural features.

Our approaches tried to avoid heuristics and hand-crafted assumptions

on the structure of proteins but for the fragment assembly approach

we relied on a heuristic method to segment domains as described in

Equation (3). In contrast, many fragment assembly approaches rely on

secondary structure to limit the types of fragments available in certain

regions and to modify the folding potential. The distance prediction

network can express ambiguity by predicting distance distributions,

which can represent secondary structure in short-range distances, in a

way which is harder to do with three-way classification of secondary

structure. The gradient descent algorithm has even fewer hyper-

parameters and assumptions than this and performs better.

We note that our method performed well in the TBM + TBM/FM

category, despite none of the methods explicitly using template infor-

mation. This is because proteins that have a template in the PDB also

tend to have rich coevolutionary information and can thus be well

modeled by the distance prediction potential.

The main weakness of our approach is that it still relies heavily on

coevolution. When few alignments are available, distance predictions

tend to be uninformative and poor structures are generated (Figure 6).

Since there is no explicit template lookup, performance on TBM targets

with few homologous sequences was much worse than template-based

methods. Also, we did not attempt to propagate the uncertainty about

distance into an uncertainty in residue positions. The B-factors submit-

ted were incorrect leading to suboptimal performance when A7D

models were used for molecular replacement.
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