66 research outputs found

    Application of picosecond laser ablation to the production of colloidal gold nanoparticles

    Get PDF
    In the nanoscience, nanotechnology, the main unifying theme is the control of matter on a scale smaller than l micrometre, normally approximately l to 100 nanometers, as well as the fabrication of devices of this size. The nanoscience is a highly multidisciplinary field, drawing from fields such as applied physics, materials science, colloidal science, device physics, supramolecular chemistry, and even mechanical and electrical engineering. Nanotechnology can be seen as an extension of existing sciences into the nanoscale, or as a recasting of existing sciences using a newer, more modern term. Among all nanomaterials, the nanoparticles are very attractive due to their physical and chemical properties and to their applications in a wide range of fields. Metal nanoparticles are of great interest because of their size and shape-dependent properties, the most important being the plasmon resonance. The noble metals nanoparticles started to be intensively studied in the last decades, because of their unique properties which make them useful for applications in several rapidly developing fields like photonics, information technology, cancer treatment, in vivo spectroscopy, biomacromolecules labeling, etc. Many different techniques have been developed for the synthesis of metal nanoparticles, the most widely used being based on chemical reactions in solutions that yield colloids of metal nanoparticles. These techniques usually employ a chemical agent to stop the growth of the particles at the nanoscale, and capping materials, such as surfactants, polymers or dendrimers, are used to prevent aggregation and precipitation of the metal nanoparticles. Chemically produced gold and silver nanoparticles are commercially available, but the samples vary from batch to batch and could be contaminated from chemicals used in the synthetic procedure. Moreover, the choice of the solvent and surface chemistry often reduces the number of possible synthetic techniques for the desired process. The use of pulsed laser ablation could be an alternative method sice it has a great flexibility in the use of materials and solvents, it is less time consuming, and above all has the advantage of producing nanoparticles free from by-products of chemical reactions. The results presented in literature for the production of nanoparticles by pulsed laser ablation of a solid target in liquids have demonstrated that this method is a promising alternative to the chemical synthesis of nanoparticles. The previous works were done mainly with nanosecond and femtosecond laser pulses and have observed a dependence of the ablation mechanism on the length of the laser pulse. Since only few works report results obtained by using picosecond laser ablation, the primary purpose of this thesis was to investigate the application of the picosecond laser pulse to the production of colloidal nanoparticles. In this thesis was studied the production of colloidal gold nanoparticles by laser ablation of a solid gold target in liquids using the fundamental (1064nm) or second harmonic (532nm) of a modelocked Nd-YAG laser (EKSPLA PL2l43A: repetition rate 10Hz, pulse width 25ps at 1064nm and 20ps at 532nm). The liquids employed were doubly deionized water, aqueous solution of sodium dodecyl sulphate and aqueous solutions of poly(amidoamine) dendrimer, PAMAM G5. Wes also initiated the study of' the production of gold nanoparticles in organic solvents. Our investigation was founded on the combined use of several experimental techniques, mainly on-line monitoring of the optical transmission of a low power beam at 5 l4.5nm from an Ar laser, UV-Vis spectroscopy and TEM microscopy. The results show the that by picosecond laser ablation spherical shape gold nanoparticles were produced in all experimented liquids. The mean diameter of the resulting nanoparticles turned out to be dependent on the laser wavelength employed for the target ablation, on the nature of the liquid environment, and on the stabilizing agent. Its value was rather small: between l.7nm in toluene and 4.51nm in aqueous solution of PAMAM G5, with the exception of diethyl ether in wich the mean diameter of the nanoparticles was increased to l6.8nm. The experiments confirmed the instability of the free gold nanoparticles in water and their tendency to form large aggregates with dendritic structures and revealed the existence of two different mechanisms of production of the nanoparticles depending on the laser wave length. Stable gold nanoparticles were produced and metal-dendrimer nanocomposites (DNC) were found to be formed in aqueous solutions of PAMAM G5. The known size reduction effect of the 532nm radiation has been investigated end the photofragmentation of PAMAM GS-capped-gold nanoparticles has been showed to be clue to the multiphoton absorption of the 532mm radiation

    Novel Antibacterial and Toughened Carbon-Fibre/Epoxy Composites by the Incorporation of TiO2 Nanoparticles Modified Electrospun Nanofibre Veils

    Get PDF
    The inclusion of electrospun nanofiber veils was revealed as an effective method for enhancing the mechanical properties of fiber-reinforced epoxy resin composites. These veils will eventually allow the incorporation of nanomaterials not only for mechanical reinforcement but also in multifunctional applications. Therefore, this paper investigates the effect of electrospun nanofibrous veils made of polyamide 6 modified with TiO2 nanoparticles on the mechanical properties of a carbon-fiber/epoxy composite. The nanofibers were included in the carbon-fiber/epoxy composite as a single structure. The effect of positioning these veils in different composite positions was investigated. Compared to the reference, the use of unmodified and TiO2 modified veils increased the flexural stress at failure and the fracture toughness of composites. When TiO2 modified veils were incorporated, new antibacterial properties were achieved due to the photocatalytic properties of the veils, widening the application area of these composites.This research is funded by the ELKARTEK Programme, “ACTIMAT”, grupos de investigación del sistema universitario vasco (IT718-13), the Spanish government through the project TEC2015-63838-C3-1-R-OPTONANOSENS and from the Basque government through the project KK-2017/00089-µ4F

    Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Get PDF
    Composites based on epoxy/graphene oxide (GO) and epoxy/reduced graphene oxide (rGO) were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD) demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA) and transmission electron microscopy (TEM). A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.Authors would like to acknowledge the Basque Government funding within the ELKARTEK 2015-2016 (KK-2015/00094) and 2016-2017 (KK-2016/00097) Programme, "ACTIMAT", ETORGAI 2014, Graphnology (ER-2014/00014) and Ayudas para apoyar las actividades de los grupos de investigacion del sistema universitario vasco (IT718-13)

    Giant cell granuloma of the maxilla: global management, review of literature and case report

    Get PDF
    Giant cell granuloma is a relatively rare benign entity but can be locally aggressive. Histologically characterized by intense proliferation of multinucleated giant cells and fibroblasts. Affects bone supported tissues. Definitive diagnosis is given by biopsy. Clinically manifest as a mass or nodule of reddish color and fleshy, occasionally ulcerated surface. They can range from asymptomatic to destructive lesions that grow quickly. It is a lesion to be considered in the differential diagnosis of osteolytic lesions affecting the maxilla or jaw. Its management passed from conservative treatment with intralesional infiltration of corticosteroids, calcitonin or interferon, to the surgical resection and reconstruction, for example with microvascular free flaps. Keywords: giant cell granuloma, intralesional injection, microvascular free flap, fibula

    Understanding informal jewellery apprenticeship in Ghana: Nature, processes and challanges

    Get PDF
    Context: The processes of acquiring education in jewellery in Ghana has been dominated by the informal apprenticeship system and it forms the backbone of the workforce of the jewellery industry in Ghana. However, the patronage of informal jewellery apprenticeship in Ghana in recent times has been on decline even though it has the potential of training human resources to transform Ghana’s precious mineral resources sector.This is based on the belief that jewellery trade and its training are shrouded in secrecy, in other words, the jewellery trade is considered to be a sacred profession where information on its operating systems are not allowed to be shared easily. It is believed to be associated with cult and magic, hence the reluctant to admit people who are from outside the family of particular jewellery enterprise. This study is sought to bring to fore the understanding nature, processes and challenges of the informal jewellery apprenticeship in Ghana. Approach: The study adopted the descriptive and phenomenology research designs (qualitative research methods). Jewellers who own a jewellery business and who are training other people through apprenticeships as well as people who are trained are observed and interviewed. A sample size was selected through purposive and convenience sampling techniques from four jewellery enterprises in Accra, Ghana. A thematic analysis plan was adopted to generate fndings of the study. Findings: The results show that for a person to train as a jeweller, s/he has to enrol by going through induction, futhremore fees (money and perishable items) are to be paid. The training content is driven by orders received by the master jeweller, thereby making it unstructured and lacking criteria for assessing the performance and progress of apprentice jewellers. Teaching and learning methods are usually on-the-job training that rely on demonstrations and observation. Conclusion: Informal jewellery apprenticeship in Ghana uses a fexible, cost-efective approach for transferring jewellery making skills from masters to apprentice jewellers, and it has substantial potential for improving skills training in the country. Sometimes the reluctant of some jeweller to train others is to keep the trade to family members only

    Functional reconstruction after subtotal glossectomy in the surgical treatment of an uncommon and aggressive neoplasm in this location: primary malignant melanoma in the base of the tongue

    Get PDF
    Primary malignant melanoma of the oral cavity is a rare neoplasm, especially on the tongue. We report a case of mucosal melanoma at the base of the tongue, an extremely rare location (only about 30 cases have been reported in literature). The extension study doesn't revealed distant metastatic lesions. The patient was treated by subtotal glossectomy and bilateral functional neck dissection. Tongue is one of the most difficult structures to reconstruct, because of their central role in phonation, swallowing and airway protection. The defect was reconstructed with anterolateral thigh free flap. Surgical treatment was supplemented with adjuvant immunotherapy. The post-operative period was uneventful. At present, 24 months after surgery, patient is asymptomatic, there isn't evidence of recurrence of melanoma and he hasn't any difficulty in swallowing or phonation

    Analysis of the influence of microencapsulated phase change materials on the behavior of a new generation of thermo-regulating shape memory polyurethane fibers

    Get PDF
    The present work is a first approach in order to achieve thermo-sensitive and waterproof polyurethane fibers useful in the textile industry. For this, two polyurethane formulations with glass transition temperatures (Tg) close to the body temperature have been synthetized and characterized by several techniques such as Ther-mogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic-Mechanical Analysis (DMA) and Thermo-mechanical analysis (TMA). In this manner their thermal and shape memory behavior were determined. It was also estimated the water vapor transmission rate of both polyurethane films. Then, integration of two different microencapsulated phase change materials (PCMs), one with organic shell and another one, with an inorganic shell, was carried out by extrusion in order to achieve materials with thermo-regulating properties. Fibers for both polyurethanes, pristine or loaded with microencapsulated PCMs, were again characterized to check that the thermal and shape memory properties are maintained, and to study their capability to storage and release energy. The promising results pave the way for a new generation of thermo-regulating materials useful in numerous applications such as the textile sector.Authors would like to acknowledge the Basque Government funding within the ELKARTEK 2019 (KK-2019/00039) and ELKARTEK 2021 (KK-2021/00040) and FRONTIERS IV Prog rammes

    ctDNA analysis reveals different molecular patterns upon disease progression in patients treated with osimertinib

    Get PDF
    Background: Several clinical trials have demonstrated the efficacy and safety of osimertinib in advanced nonsmall-cell lung cancer (NSCLC). However, there is significant unexplained variability in treatment outcome. Methods: Observational prospective cohort of 22 pre-treated patients with stage IV NSCLC harboring the epidermal growth factor receptor (EGFR) p.T790M resistance mutation and who were treated with osimertinib. Three hundred and twenty-six serial plasma samples were collected and analyzed by digital PCR (dPCR) and next-generation sequencing (NGS). Results: The median progression-free survival (PFS), since the start of osimertinib, was 8.9 [interquartile range (IQR): 4.6–18.0] months. The median treatment durations of sequential gefitinib + osimertinib, afatinib + osimertinib and erlotinib + osimertinib treatments were 30.1, 24.6 and 21.1 months, respectively. The p.T790M mutation was detected in 19 (86%) pre-treatment blood samples. Undetectable levels of the original EGFR-sensitizing mutation after 3 months of treatment were associated with superior PFS (HR: 0.2, 95% CI: 0.05–0.7). Likewise, re-emergence of the original EGFR mutation, alone or together with the p.T790M mutation was significantly associated with shorter PFS (HR: 8.8, 95% CI: 1.1–70.7 and HR: 5.9, 95% CI: 1.2–27.9, respectively). Blood-based monitoring revealed three molecular patterns upon progression to osimertinib: sensitizing+/T790M+/C797S+, sensitizing+/T790M+/C797S–, and sensitizing+/T790M–/ C797S–. Median time to progression in patients showing the triplet pattern (sensitizing+/T790M+/C797S+) was 12.27 months compared with 4.87 months in patients in whom only the original EGFR sensitizing was detected, and 2.17 months in patients showing the duplet pattern (sensitizing+/T790M+). Finally, we found that mutations in exon 545 of the PIK3CA gene were the most frequent alteration detected upon disease progression in patients without acquired EGFR-resistance mutations. Conclusions: Different molecular patterns identified by plasma genotyping may be of prognostic significance, suggesting that the use of liquid biopsy is a valuable approach for tumor monitoring.post-print468 K

    Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition

    Full text link
    Background: Platinum-based chemotherapy remains the standard of care for most lung cancer cases. However chemoresistance is often developed during the treatment, limiting clinical utility of this drug. Recently, the ability of tumor cells to adapt their metabolism has been associated to resistance to therapies. In this study, we first described the metabolic reprogramming of Non-Small Cell Lung Cancer (NSCLC) in response to cisplatin treatment. Methods: Cisplatin-resistant versions of the A549, H1299, and H460 cell lines were generated by continuous drug exposure. The long-term metabolic changes, as well as, the early response to cisplatin treatment were analyzed in both, parental and cisplatin-resistant cell lines. In addition, four Patient-derived xenograft models treated with cisplatin along with paired pre- and post-treatment biopsies from patients were studied. Furthermore, metabolic targeting of these changes in cell lines was performed downregulating PGC-1α expression through siRNA or using OXPHOS inhibitors (metformin and rotenone). Results: Two out of three cisplatin-resistant cell lines showed a stable increase in mitochondrial function, PGC1-α and mitochondrial mass with reduced glycolisis, that did not affect the cell cycle. This phenomenon was confirmed in vivo. Post-treatment NSCLC tumors showed an increase in mitochondrial mass, PGC-1α and a decrease in the GAPDH/MT-CO1 ratio. In addition, we demonstrated how a ROS-mediated metabolism reprogramming, involving PGC-1α and increased mitochondrial mass, is induced during short-time cisplatin exposure. Moreover, we tested how cells with increased PGC-1a induced by ZLN005 treatment, showed reduced cisplatin-driven apoptosis. Remarkably, the long-term metabolic changes, as well as the metabolic reprogramming during short-time cisplatin exposure can be exploited as an Achilles’ heel of NSCLC cells, as demonstrated by the increased sensitivity to PGC-1α interference or OXPHOS inhibition using metformin or rotenone. Conclusion: These results describe a new cisplatin resistance mechanism in NSCLC based on a metabolic reprogramming that is therapeutically exploitable through PGC-1α downregulation or OXPHOS inhibitors.Work in the authors’ laboratories is supported by ‘‘Instituto de Salud Carlos III’’ PI13/01806 and PIE14/0064 to M.P. A.C-B, received a Spanish Lung Cancer Group fellowship. R.L-B, is supported by Comunidad Autónoma de Madrid “Garantía juvenil” contrac

    Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling

    Full text link
    Lung cancer is a major public health problem due to its high incidence and mortality rate. The altered metabolism in lung cancer is key for the diagnosis and has implications on both, the prognosis and the response to treatments. Although Cancer-associated fibroblasts (CAFs) are one of the major components of the tumor microenvironment, little is known about their role in lung cancer metabolism. We studied tumor biopsies from a cohort of 12 stage IIIA lung adenocarcinoma patients and saw a positive correlation between the grade of fibrosis and the glycolysis phenotype (Low PGC-1α and High GAPDH/MT-CO1 ratio mRNA levels). These results were confirmed and extended to other metabolism-related genes through the in silico data analysis from 73 stage IIIA lung adenocarcinoma patients available in TCGA. Interestingly, these relationships are not observed with the CAFs marker α-SMA in both cohorts. To characterize the mechanism, in vitro co-culture studies were carried out using two NSCLC cell lines (A549 and H1299 cells) and two different fibroblast cell lines. Our results confirm that a metabolic reprogramming involving ROS and TGF-β signaling occurs in lung cancer cells and fibroblasts independently of α-SMA induction. Under co-culture conditions, Cancer-Associated fibroblasts increase their glycolytic ability. On the other hand, tumor cells increase their mitochondrial function. Moreover, the differential capability among tumor cells to induce this metabolic shift and also the role of the basal fibroblasts Oxphos Phosphorylation (OXPHOS) function modifying this phenomenon could have implications on both, the diagnosis and prognosis of patients. Further knowledge in the mechanism involved may allow the development of new therapies.Work in the authors’ laboratories is supported by ‘‘Instituto de Salud Carlos III’’ PI13/01806 and PIE14/0064 to M.P. A.C-B, received a Spanish Lung Cancer Group fellowship. R.L-B, is supported by Comunidad Autónoma de Madrid “Garantía juvenil” contract
    corecore