38 research outputs found

    Leveling Up Hydrogels:Hybrid Systems in Tissue Engineering

    Get PDF
    Hydrogels can mimic several features of the cell native microenvironment and have been widely used as synthetic extracellular matrices (ECMs) in tissue engineering and regenerative medicine (TERM). However, some applications have specifications that hydrogels cannot efficiently fulfill on their own. Incorporating reinforcing structures like fibrous scaffolds or particles into hydrogels, as hybrid systems, is a promising strategy to improve their functionality. We describe recent advances in the fabrication and application of these hybrid systems, where structural properties and stimuli responsiveness of hydrogels are enhanced while their ECM-like features are preserved. Furthermore, we discuss how these systems can contribute to the development of more complex tissue engineered structures in the rapidly evolving field of TERM

    Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering

    Get PDF
    Cell-instructive hydrogels are attractive for skin repair and regeneration, serving as interactive matrices to promote cell adhesion, cell-driven remodeling and de novo deposition of extracellular matrix compo nents. This paper describes the synthesis and photocrosslinking of cell-instructive pectin hydrogels using cell-degradable peptide crosslinkers and integrin-specific adhesive ligands. Protease-degradable hydro gels obtained by photoinitiated thiol-norbornene click chemistry are rapidly formed in the presence of dermal fibroblasts, exhibit tunable properties and are capable of modulating the behavior of embedded cells, including the cell spreading, hydrogel contraction and secretion of matrix metalloproteases. Keratinocytes seeded on top of fibroblast-loaded hydrogels are able to adhere and form a compact and dense layer of epidermis, mimicking the architecture of the native skin. Thiol-ene photocrosslinkable pec tin hydrogels support the in vitro formation of full-thickness skin and are thus a highly promising plat form for skin tissue engineering applications, including wound healing and in vitro testing modinfo:eu-repo/semantics/publishedVersio

    Calcium phosphate-alginate microspheres as enzyme delivery matrices

    Get PDF
    The present study concerns the preparation and initial characterisation of novel calcium titanium phosphate-alginate (CTPalginate) and hydroxyapatite-alginate (HAp-alginate) microspheres, which are intended to be used as enzyme delivery matrices and bone regeneration templates. Microspheres were prepared using different concentrations of polymer solution (1% and 3% w/v) and different ceramic-to-polymer solution ratios (0.1, 0.2 and 0.4 w/w). Ceramic powders were characterised using X-ray diffraction, laser granulometry, Brunauer, Emmel and Teller (BET) method for the determination of surface area, zeta potential and Fourier transform infrared spectroscopy (FT-IR). Alginate was characterised using high performance size exclusion chromatography. The methodology followed in this investigation enabled the preparation of homogeneous microspheres with a uniform size. Studies on the immobilisation and release of the therapeutic enzyme glucocerebrosidase, employed in the treatment of Gaucher disease, were also performed. The enzyme was incorporated into the ceramic-alginate matrix before gel formation in two different ways: preadsorbed onto the ceramic particles or dispersed in the polymeric matrix. The two strategies resulted in distinct release profiles. Slow release was obtained after adsorption of the enzyme to the ceramic powders, prior to preparation of the microspheres. An initial fast release was achieved when the enzyme and the ceramic particles were dispersed in the alginate solution before producing the microspheres. The latter profile is very similar to that of alginate microspheres. The different patterns of enzyme release increase the range of possible applications of the system investigated in this work.info:eu-repo/semantics/publishedVersio

    Development of an improved 3D in vitro intestinal model to perform permeability studies of paracellular compounds

    Get PDF
    The small intestine is the primary site of drug absorption following oral administration, making paramount the proper monitoring of the absorption process. In vitro tools to predict intestinal absorption are particularly important in preclinical drug development since they are less laborious and cost-intensive and raise less ethical considerations compared to in vivo studies. The Caco-2 model is considered the gold standard of in vitro intestinal models regarding the prediction of absorption of orally delivered compounds. However, this model presents several drawbacks, such as the expression of tighter tight junctions, not being suitable to perform permeability of paracellular compounds. Besides, cells are representative of only one intestinal cell type, without considering the role of non-absorptive cells on the absorption pathway of drugs. In the present study, we developed a new three-dimensional (3D) intestinal model that aims to bridge the gap between in vitro tools and animal studies. Our 3D model comprises a collagen layer with human intestinal fibroblasts (HIFs) embedded, mimicking the intestinal lamina propria and providing 3D support for the epithelium, composed of Caco-2 cells and mucus-producing HT29-MTX cells, creating a model that can better resemble, both in terms of composition and regarding the outcomes of drug permeability when testing paracellular compounds, the human small intestine. The optimization of the collagen layer with HIFs was performed, testing different collagen concentrations and HIF seeding densities in order to avoid collagen contraction before day 14, maintaining HIF metabolically active inside the collagen disks during time in culture. HIF morphology and extracellular matrix (ECM) deposition were assessed, confirming that fibroblasts presented a normal and healthy elongated shape and secreted fibronectin and laminin, remodeling the collagen matrix. Regarding the epithelial layer, transepithelial electrical resistance (TEER) values decreased when cells were in the 3D configuration, comparing with the 2D analogs (Caco-2 and coculture of Caco-2+HT29-MTX models), becoming more similar with in vivo values. The permeability assay with fluorescein isothiocyanate (FITC)-Dextran 4 kDa showed that absorption in the 3D models is significantly higher than that in the 2D models, confirming the importance of using a more biorelevant model when testing the paracellular permeability of compounds

    Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells

    Get PDF
    AbstractThe purpose of this work was to investigate if a coculture system of human mesenchymal stem cells (hMSC) with endothelial cells (human umbilical vein endothelial cells, HUVEC) could modulate the phenotype and proliferation of harvested MSCs. In addition to previous investigations on the crosstalk between these two cell types, in the present work different relative cell ratios were analyzed for long, therapeutically relevant, culture periods. Moreover, MSCs osteogenic commitment was assessed in a non-osteogenic medium and in the presence of HUVECs through magnetic cell separation, cell quantification by flow cytometry, morphology by fluorescent microscopy, metabolic activity and gene expression of osteogenic markers. Collectively, the present findings demonstrate that, by coculturing MSCs with HUVECs, there was not only the promotion of osteogenic differentiation (and its enhancement, depending on the relative cell ratios used), but also a significant increase on MSCs proliferation. This augmentation in cell proliferation occurred independently of relative cell ratios, but was favored by higher relative amounts of HUVECs. Taken together, this data suggests that HUVECs not only modulate MSC phenotype but also their proliferation rate. Therefore, a coculture system of MSCs and HUVECs can a have a broad impact on bone tissue engineering approaches

    Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells

    Get PDF
    The outcome of cell-based therapies can benefit from carefully designed cell carriers. A multifunctional injectable vehicle for the co-delivery of human mesenchymal stem cells (hMSCs) and osteoinductive peptides is proposed, to specifically direct hMSCs osteogenic differentiation. The osteogenic growth peptide (OGP) inspired the design of two peptides, where the bioactive portion of OGP was flanked by a protease-sensitive linker, or its scrambled sequence, to provide faster and slower release rates, respectively. Peptides were fully characterized and chemically grafted to alginate. Both OGP analogs released bioactive fragments in vitro, at different kinetics, which stimulated hMSCs proliferation and osteogenesis. hMSCs-laden OGP-alginate hydrogels were tested at an ectopic site in a xenograft mouse model. After 4 weeks, OGP-alginate hydrogels were more degraded and colonized by vascularized connective tissue than the control (without OGP). hMSCs were able to proliferate, migrate outward the hydrogels, produce endogenous extracellular matrix and mineralize it. Moreover, OGP-groups stimulated hMSCs osteogenesis, as compared with the control. Overall, the ability of the proposed platform to direct the fate of transplanted hMSCs in loco was demonstrated, and OGP-releasing hydrogels emerged as a potentially useful system to promote bone regeneration

    Correction: Biofunctionalized pectin hydrogels as 3D cellular microenvironments

    Get PDF
    Correction for 'Biofunctionalized pectin hydrogels as 3D cellular microenvironments' by Sara C. Neves et al., J. Mater. Chem. B, 2015, 3, 2096–2108

    Geometrically controlled liquefied capsules for modular tissue engineering strategies

    Get PDF
    A plethora of bioinspired cell-laden hydrogels are being explored as building blocks that once assembled are able to create complex and highly hierarchical structures recapitulating the heterogeneity of living tissues. Yet, the resulting 3D bioengineered systems still present key limitations, mainly related with limited diffusion of essential molecules for cell survival, which dictates the failure of most strategies upon implantation. To maximize the hierarchical complexity of bioengineered systems, while simultaneously fully addressing the exchange efficiency of biomolecules, the high-throughput fabrication of liquefied capsules is proposed using superhydrophobic-superhydrophilic microarrays as platforms to produce the initial structures with high fidelity of geometry and size. The liquefied capsules are composed by i) a permselective multilayered membrane; ii) surface-functionalized poly(ε-caprolactone) microparticles loaded into the liquefied core acting as cell adhesion sites; and iii) cells. It is demonstrated that besides the typical spherical liquefied capsules, it is also possible to obtain multi-shaped blocks with high geometrical precision and efficiency. Importantly, the internal gelation approach used to produce such blocks does not jeopardize cell viability, evidencing the mild conditions of the proposed cell encapsulation technique. The proposed system is intended to be used as hybrid devices implantable using minimally invasive procedures for multiple tissue engineering applications.publishe

    Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips

    Get PDF
    Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden

    Membrane Cholesterol Regulates Lysosome-Plasma Membrane Fusion Events and Modulates Trypanosoma cruzi Invasion of Host Cells

    Get PDF
    Trypanosoma cruzi, is the etiological agent of a neglected tropical malady known as Chagas' disease, which affects about 8 million people in Latin America. 30–40% of affected individuals develop a symptomatic chronic infection, with cardiomyopathy being the most prevalent condition. T. cruzi utilizes an interesting strategy for entering cells: T. cruzi enhances intracellular calcium levels, which in turn trigger the exocytosis of lysosomal contents. Lysosomes then donate their membrane for the formation of the parasitophorous vacuole. Membrane rafts, cholesterol-enriched microdomains in the host cell plasma membrane, have also been implicated in T. cruzi invasion process. Since both plasma membrane and lysosomes collaborate in parasite invasion, we decided to study the importance of these membrane domains for lysosomal recruitment and fusion during T. cruzi invasion into host cells. Our results show that drug dependent depletion of plasma membrane cholesterol changes raft organization and induces excessive lysosome exocytosis in the earlier stages of treatment, leading to a depletion of lysosomes near the cell cortex, which in turn compromises T. cruzi invasion. Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events of pre-docked lysosomes, reducing lysosome availability at the cell cortex and consequently compromising T. cruzi infection
    corecore