265 research outputs found

    Regulation of surfactant protein D in the rodent prostate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surfactant protein D (SP-D) is an innate immune protein that is present in mucosal lined surfaces throughout the human body, including the male reproductive tract. In the present study, we characterized the regulation of SP-D expression in the mouse and rat prostate.</p> <p>Methods</p> <p>Real time reverse transcriptase polymerase chain reaction (RT-PCR) and immunostaining were used to characterize SP-D mRNA and protein in the mouse male reproductive tract. In order to evaluate the effects of testosterone on SP-D gene expression, we measured SP-D mRNA levels via real time RT-PCR in prostates from sham-castrated mice and castrated mice. In addition, we used a rat prostatitis model in which Escherichia coli was injected into the prostate in vivo to determine if infection influences SP-D protein levels in the prostate.</p> <p>Results</p> <p>We found that SP-D mRNA and protein are present throughout the mouse male reproductive tract, including in the prostate. We determined that castration increases prostate SP-D mRNA levels (~7 fold) when compared to levels in sham-castrated animals. Finally, we demonstrated that infection in the prostate results in a significant increase in SP-D content 24 and 48 hours post-infection.</p> <p>Conclusion</p> <p>Our results suggest that infection and androgens regulate SP-D in the prostate.</p

    Social distancing and testing as optimal strategies against the spread of COVID-19 in the Rio Grande Valley of Texas

    Get PDF
    At the beginning of August 2020, the Rio Grande Valley (RGV) of Texas experienced a rapid increase of coronavirus disease 2019 (abbreviated as COVID-19) cases and deaths. This study aims to determine the optimal levels of effective social distancing and testing to slow the virus spread at the outset of the pandemic. We use an age-stratified eight compartment epidemiological model to depict COVID-19 transmission in the community and within households. With a simulated 120-day outbreak period data we obtain a post 180-days period optimal control strategy solution. Our results show that easing social distancing between adults by the end of the 180-day period requires very strict testing a month later and then daily testing rates of 5% followed by isolation of positive cases. Relaxing social distancing rates in adults from 50% to 25% requires both children and seniors to maintain social distancing rates of 50% for nearly the entire period while maintaining maximum testing rates of children and seniors for 150 of the 180 days considered in this model. Children have higher contact rates which leads to transmission based on our model, emphasizing the need for caution when considering school reopenings

    Dedifferentiation of prostate smooth muscle cells in response to bacterial LPS

    Get PDF
    Prostate smooth muscle cells (SMCs) are strongly involved in the development and progression of benign prostatic hyperplasia and prostate cancer. However, their participation in prostatitis has not been completely elucidated. Thus, we aimed to characterize the response of normal SMC to bacterial lipopolysaccharide (LPS). Methods Primary prostate SMCs from normal rats were stimulated with LPS (0.1, 1, or 10Âμg/ml) for 24 or 48hr. The phenotype was evaluated by electron microscopy, immunofluorescence, and Western blot of SMCα-actin (ACTA2), calponin, vimentin, and tenascin-C, while the innate immune response was assessed by immunodetection of TLR4, CD14, and nuclear NF-κB. The secretion of TNFα and IL6 was determined using ELISA. Results Bacterial LPS induces SMCs to develop a secretory phenotype including dilated rough endoplasmic reticulum cisternae with well-developed Golgi complexes. Furthermore, SMCs displayed a decrease in ACTA2 and calponin, and an increase in vimentin levels after LPS challenge. The co-expression of ACTA2 and vimentin, together with the induction of tenascin-C expression indicate that a myofibroblastic-like phenotype was induced by the endotoxin. Moreover, LPS elicited a TLR4 increase, with a peak in NF-κB activation occurring after 10min of treatment. Finally, LPS stimulated the secretion of IL6 and TNFα. ConclusionS Prostate SMCs are capable of responding to LPS in vitro by dedifferentiating from a contractile to a miofibroblastic-like phenotype and secreting cytokines, with the TLR4 signaling pathway being involved in this response. In this way, prostate SMCs may contribute to the pathophysiology of inflammatory diseases by modifying the epithelial-stromal interactions.Fil: Leimgruber, Carolina. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; ArgentinaFil: Quintar, Amado A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Sosa, Liliana del Valle. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; ArgentinaFil: García, Luciana Noemí. Universidad Nacional de Córdoba; Argentina. Centro de Investigación de la Fundación Repro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Figueredo, Carlos Mauricio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Maldonado, Cristina Alicia. Universidad Nacional de Córdoba. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; Argentin

    Zirconium Metal−Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment

    Get PDF
    Organophosphate nerve agents and pesticides are extremely toxic compounds because they result in acetylcholinesterase (AChE) inhibition and concomitant nerve system damage. Herein, we report the synthesis, structural characterization, and proof-of-concept utility of zirconium metal−organic polyhedra (Zr-MOPs) for organophosphate poisoning treatment. The results show the formation of robust tetrahedral cages [((n-butylCpZr)3(OH)3O)4L6]Cl6 (Zr-MOP-1; L = benzene-1,4- dicarboxylate, n-butylCp = n-butylcyclopentadienyl, Zr-MOP-10, and L = 4,4′-biphenyldicarboxylate) decorated with lipophilic alkyl residues and possessing accessible cavities of ∼9.8 and ∼10.7 Å inner diameters, respectively. These systems are able to both capture the organophosphate model compound diisopropylfluorophosphate (DIFP) and host and release the AChE reactivator drug pralidoxime (2-PAM). The resulting 2-PAM@ Zr-MOP-1(0) host−guest assemblies feature a sustained delivery of 2-PAM under simulated biological conditions, with a concomitant reactivation of DIFP-inhibited AChE. Finally, 2-PAM@Zr-MOP systems have been incorporated into biocompatible phosphatidylcholine liposomes with the resulting assemblies being non-neurotoxic, as proven using neuroblastoma cell viability assays.Spanish MCIN/AEI PID2020-113608RB-I00FEDER/Junta de Andalucia-Conserjeria de Economia y Conocimiento B-FQM-364-UGR18 B-FQM-006-UGR18FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades P18-RT-612 P20_00672Fondazione CRUIprograma Juan de la Cierva FormacionSpanish Government PID2020-118117RB-I00Center for Forestry Research & Experimentation (CIEF)European Commission SEJIGENT/2021/059 PROMETEU/2021/054La Caixa Foundation 100010434 LCF/BQ/PR20/11770014"Maria de Maeztu" Program for Centers of Excellence in RD CEX2019-000919-MH2020-MSCA-IF2019-888972-PSust-MO

    A Multi-Omics Analysis Pipeline for the Metabolic Pathway Reconstruction in the Orphan Species Quercus ilex

    Get PDF
    Holm oak (Quercus ilex) is the most important and representative species of the Mediterranean forest and of the Spanish agrosilvo-pastoral “dehesa” ecosystem. Despite its environmental and economic interest, Holm oak is an orphan species whose biology is very little known, especially at the molecular level. In order to increase the knowledge on the chemical composition and metabolism of this tree species, the employment of a holistic and multi-omics approach, in the Systems Biology direction would be necessary. However, for orphan and recalcitrant plant species, specific analytical and bioinformatics tools have to be developed in order to obtain adequate quality and data-density before to coping with the study of its biology. By using a plant sample consisting of a pool generated by mixing equal amounts of homogenized tissue from acorn embryo, leaves, and roots, protocols for transcriptome (NGS-Illumina), proteome (shotgun LC-MS/MS), and metabolome (GC-MS) studies have been optimized. These analyses resulted in the identification of around 62629 transcripts, 2380 protein species, and 62 metabolites. Data are compared with those reported for model plant species, whose genome has been sequenced and is well annotated, including Arabidopsis, japonica rice, poplar, and eucalyptus. RNA and protein sequencing favored each other, increasing the number and confidence of the proteins identified and correcting erroneous RNA sequences. The integration of the large amount of data reported using bioinformatics tools allows the Holm oak metabolic network to be partially reconstructed: from the 127 metabolic pathways reported in KEGG pathway database, 123 metabolic pathways can be visualized when using the described methodology. They included: carbohydrate and energy metabolism, amino acid metabolism, lipid metabolism, nucleotide metabolism, and biosynthesis of secondary metabolites. The TCA cycle was the pathway most represented with 5 out of 10 metabolites, 6 out of 8 protein enzymes, and 8 out of 8 enzyme transcripts. On the other hand, gaps, missed pathways, included metabolism of terpenoids and polyketides and lipid metabolism. The multi-omics resource generated in this work will set the basis for ongoing and future studies, bringing the Holm oak closer to model species, to obtain a better understanding of the molecular mechanisms underlying phenotypes of interest (productive, tolerant to environmental cues, nutraceutical value) and to select elite genotypes to be used in restoration and reforestation programs, especially in a future climate change scenario

    Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations

    Get PDF
    Analyzing differences in tolerance to drought in Quercus spp., and the characterization of these responses at the species and individual population level, are imperative for the selection of resilient elite genotypes in reforestation programs. The main objective of this work was to evaluate differences in the response and tolerance to water shortage under in five Quercus spp. and five Andalusian Q. ilex populations at the inter- and intraspecies level. Six-month-old seedlings grown in perlite were subjected to drought treatments by withholding water for 28 days under mean 37 °C temperature, 28 W m-2 solar irradiance, and 41% humidity. The use of perlite as the substrate enabled the establishment of severe drought stress with reduction in water availability from 73% (field capacity) to 28% (dryness), corresponding to matric potentials of 0 and −30 kPa. Damage symptoms, mortality rate, leaf water content, photosynthetic, and biochemical parameters (amino acids, sugars, phenolics, and pigments) were determined. At the phenotypic level, based on damage symptoms and mortality, Q. ilex behaved as the most drought tolerant species. Drought caused a significant decrease in leaf fluorescence, photosynthesis rate, and stomatal conductance in all Quercus spp. analyzed, being less pronounced in Q. ilex. There were not differences between irrigated and non-irrigated Q. ilex seedlings in the content of sugar and photosynthetic pigments, while the total amino acid and phenolic content significantly increased under drought conditions. As a response to drought, living Q. ilex seedlings adjust stomata opening and gas exchange, and keep hydrated, photosynthetically active, and metabolically competent. At the population level, based on damage symptoms, mortality, and physiological parameters, the eastern Andalusian populations were more tolerant than the western ones. These observations inform the basis for the selection of resilient genotypes to be used in breeding and reforestation programs

    Gender Inequalities in Diagnostic Inertia around the Three Most Prevalent Cardiovascular Risk Studies: Protocol for a Population-Based Cohort Study

    Get PDF
    Evidence shows that objectives for detecting and controlling cardiovascular risk factors are not being effectively met, and moreover, outcomes differ between men and women. This study will assess the gender-related differences in diagnostic inertia around the three most prevalent cardiovascular risk factors: dyslipidemia, arterial hypertension, and diabetes mellitus, and to evaluate the consequences on cardiovascular disease incidence. This is an epidemiological and cohort study. Eligible patients will be adults who presented to public primary health care centers in a Spanish region from 2008 to 2011, with hypertension, dyslipidemia, or/and diabetes and without cardiovascular disease. Participants’ electronic health records will be used to collect the study variables in a window of six months from inclusion. Diagnostic inertia of hypertension, dyslipidemia, and/or diabetes is defined as the registry of abnormal diagnostic parameters—but no diagnosis—on the person’s health record. The cohort will be followed from the date of inclusion until the end of 2019. Outcomes will be cardiovascular events, defined as hospital admission due to ischemic cardiopathy, stroke, and death from any cause. The results of this study could inform actions to rectify the structure, organization and training of health care teams in order to correct the inequality

    Transgenic mice overexpressing the full-length neurotrophin receptor TrkC exhibit increased catecholaminergic neuron density in specific brain areas and increased anxiety-like behavior and panic reaction

    Get PDF
    Accumulating evidence has suggested that neurotrophins participate in the pathophysiology of mood disorders. We have developed transgenic mice overexpressing the full-length neurotrophin-3 receptor TrkC (TgNTRK3) in the central nervous system. TgNTRK3 mice show increased anxiety-like behavior and enhancement of panic reaction in the mouse defense test battery, along with an increase in the number and density of catecholaminergic (tyrosine hydroxylase positive) neurons in locus coeruleus and substantia nigra. Furthermore, treatment of TgNTRK3 mice with diazepam significantly attenuated the anxiety-like behaviors in the plus maze. These results provide evidence for the involvement of TrkC in the development of noradrenergic neurons in the central nervous system with consequences on anxiety-like behavior and panic reaction. Thus, changes in TrkC expression levels could contribute to the phenotypic expression of panic disorder through a trophic effect on noradrenergic neurons in the locus coeruleus. Our results demonstrate that the elevated NT3-TrkC tone via overexpression of TrkC in the brain may constitute a molecular mechanism for the expression of anxiety and anxiety

    Sistemas móviles, accesibles e inteligentes para una sociedad inclusiva

    Get PDF
    En este trabajo se presenta una investigación que constituye una continuación de los proyectos sobre Computación Móvil, llevados a cabo en la Universidad Nacional de Santiago del Estero (UNSE) de 2012 a 2018, en los cuales se lograron resultados vinculados a la eficiencia de aplicaciones móviles, el aprendizaje basado en dispositivos móviles (m-learning), realidad aumentada (RA), tecnologías para discapacidad y herramientas y métodos para el desarrollo móvil multiplataforma. Sobre la base de dichos resultados, se propone continuar investigando sobre métodos y herramientas para el desarrollo/mantenimiento de aplicaciones móviles accesibles e inteligentes, orientadas a resolver problemáticas en los siguientes dominios: aprendizaje, personas con discapacidad y personas del colectivo LGBT+. La investigación se lleva a cabo por un equipo interdisciplinario integrado por informáticos, médicos, sociólogos, fonoaudiólogos; como también profesionales de la Matemática y de Idiomas. La investigación se realiza en colaboración con el Ministerio de Salud de la Provincia de Santiago del Estero y cuenta con el asesoramiento de investigadores de UNLP, UNSa y Universidad Paris 8.Eje: Ingeniería de Software.Red de Universidades con Carreras en Informátic
    corecore