223 research outputs found

    Length-at-age and Size-Selective Mortality of the Western Basin Lake Erie Walleye (Sander vitreus) Population, 2000-2008

    Get PDF
    Size-selective mortality is common in systems where selective harvesting targets a specific size- or age-class. In general, commercial and recreational fisheries selectively remove the largest and fastest growing individuals, which may have evolutionary consequences. My goals were to examine length-at-age patterns, age at first and full recruitment to the fishery, and to determine if size-selective mortality existed in a commercially and recreationally fished population of walleye in Lake Erie of the Laurentian Great Lakes between 2000 and 2008. Mean fork length-at-age was found to increase from west to east within Lake Erie for age 2 and 3 walleye. However, mean fork-length at age 1 was not statistically different among sampling areas. Walleye first recruited to the fishery at age 1 and were not fully recruited by age 3. Smaller (slower growing) individuals were found to disproportionately survive to older ages than faster-growing fish, indicating that size-selective mortality of larger (faster growing) fish occurred. Size-selective mortality will likely have a negative effect on morphological (i.e., body size) and life history traits

    Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass \u3ci\u3ePanicum virgatum\u3c/i\u3e

    Get PDF
    Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400 Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50 Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1 395 501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome

    Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the Evolution of Chemical Diversity in Lamiaceae

    Get PDF
    The evolution of chemical complexity has been a major driver of plant diversification, with novel compounds serving as key innovations. The species-rich mint family (Lamiaceae) produces an enormous variety of compounds that act as attractants and defense molecules in nature and are used widely by humans as flavor additives, fragrances, and anti-herbivory agents. To elucidate the mechanisms by which such diversity evolved, we combined leaf transcriptome data from 48 Lamiaceae species and four outgroups with a robust phylogeny and chemical analyses of three terpenoid classes (monoterpenes, sesquiterpenes, and iridoids) that share and compete for precursors. Our integrated chemical–genomic–phylogenetic approach revealed that: (1) gene family expansion rather than increased enzyme promiscuity of terpene synthases is correlated with mono- and sesquiterpene diversity; (2) differential expression of core genes within the iridoid biosynthetic pathway is associated with iridoid presence/absence; (3) generally, production of iridoids and canonical monoterpenes appears to be inversely correlated; and (4) iridoid biosynthesis is significantly associated with expression of geraniol synthase, which diverts metabolic flux away from canonical monoterpenes, suggesting that competition for common precursors can be a central control point in specialized metabolism. These results suggest that multiple mechanisms contributed to the evolution of chemodiversity in this economically important family. The mint family (Lamiaceae) includes many culturally and economically important species and collectively exhibits an exceptionally high degree of chemical diversity. Using an integrated chemical-genomic-phylogenetic approach, gene family expansion, altered gene expression of key biosynthetic pathway genes, and flux of precursors were shown to underlie the evolution of chemodiversity observed in this chemically rich clade

    Genome Assembly and Annotation of the Medicinal Plant Calotropis gigantea, a Producer of Anticancer and Antimalarial Cardenolides

    No full text
    Calotropis gigantea produces specialized secondary metabolites known as cardenolides, which have anticancer and antimalarial properties. Although transcriptomic studies have been conducted in other cardenolide-producing species, no nuclear genome assembly for an Asterid cardenolide-producing species has been reported to date. A high-quality de novo assembly was generated for C. gigantea, representing 157,284,427 bp with an N50 scaffold size of 805,959 bp, for which quality assessments indicated a near complete representation of the genic space. Transcriptome data in the form of RNA-sequencing libraries from a developmental tissue series was generated to aid the annotation and construction of a gene expression atlas. Using an ab initio and evidence-driven gene annotation pipeline, 18,197 high-confidence genes were annotated. Homologous and syntenic relationships between C. gigantea and other species within the Apocynaceae family confirmed previously identified evolutionary relationships, and suggest the emergence or loss of the specialized cardenolide metabolites after the divergence of the Apocynaceae subfamilies. The C. gigantea genome assembly, annotation, and RNA-sequencing data provide a novel resource to study the cardenolide biosynthesis pathway, especially for understanding the evolutionary origin of cardenolides and the engineering of cardenolide production in heterologous organisms for existing and novel pharmaceutical applications

    Data from: Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anticancer and antimalarial cardenolides

    No full text
    Calotropis gigantea produces specialized secondary metabolites known as cardenolides which have anti-cancer and anti-malarial properties. Although transcriptomic studies have been conducted in other cardenolide-producing species, no nuclear genome assembly for an Asterid cardenolide-producing species has been reported to date. A high quality de novo assembly was generated for C. gigantea, representing 157,284,427 bp with an N50 scaffold size of 805,959 bp, for which quality assessments indicated a near complete representation of the genic space. Transcriptome data in the form of RNA-sequencing libraries from a developmental tissue series was generated to aid in annotation and construction of a gene expression atlas. Using an ab initio and evidence-driven gene annotation pipeline, 18,197 high confidence genes were annotated. Homologous and syntenic relationships between C. gigantea and other species within the Apocynaceae family confirmed previously identified evolutionary relationships and suggest the emergence or loss of the specialized cardenolide metabolites after the divergence of the Apocynaceae subfamilies. The C. gigantea genome assembly, annotation, and RNA-sequencing data provide a novel resource to study the cardenolide biosynthesis pathway especially for understanding the evolutionary origin of cardenolides and engineering of cardenolide production in heterologous organisms for existing and novel pharmaceutical applications

    Data from: Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anticancer and antimalarial cardenolides

    No full text
    Calotropis gigantea produces specialized secondary metabolites known as cardenolides which have anti-cancer and anti-malarial properties. Although transcriptomic studies have been conducted in other cardenolide-producing species, no nuclear genome assembly for an Asterid cardenolide-producing species has been reported to date. A high quality de novo assembly was generated for C. gigantea, representing 157,284,427 bp with an N50 scaffold size of 805,959 bp, for which quality assessments indicated a near complete representation of the genic space. Transcriptome data in the form of RNA-sequencing libraries from a developmental tissue series was generated to aid in annotation and construction of a gene expression atlas. Using an ab initio and evidence-driven gene annotation pipeline, 18,197 high confidence genes were annotated. Homologous and syntenic relationships between C. gigantea and other species within the Apocynaceae family confirmed previously identified evolutionary relationships and suggest the emergence or loss of the specialized cardenolide metabolites after the divergence of the Apocynaceae subfamilies. The C. gigantea genome assembly, annotation, and RNA-sequencing data provide a novel resource to study the cardenolide biosynthesis pathway especially for understanding the evolutionary origin of cardenolides and engineering of cardenolide production in heterologous organisms for existing and novel pharmaceutical applications
    • …
    corecore