45 research outputs found

    Infant hypervitaminosis A causes severe anemia and thrombocytopenia: evidence of a retinol-dependent bone marrow cell growth inhibition

    Get PDF
    Abstract Vitamin A is a pivotal biochemical factor required for normal proliferation and differentiation as well as for specialized functions, such as vision. The dietary intake of 1500 IU/day is recommended in the first year of life. Here, we report the case of an infant who had been given 62 000 IU/day for 80 days. The infant showed several clinical signs of retinol intoxication, including severe anemia and thrombocytopenia. Bone marrow showed a remarkably reduced number of erythroid and megakaryocytic cells. The interruption of vitamin A treatment was immediately followed by clinical and biochemical recovery. To clarify whether the effects of retinol are due to a direct action on bone marrow cell proliferation, we investigated the activity of retinol (both the drug and the pure molecule) on the growth of K-562, a multipotent hematopoietic cell line, and on bone marrow mesenchymal stem cells. We observed that vitamin A strongly inhibited the proliferation of the cells at concentrations similar to those reached in vivo. Subsequent biochemical analyses of the cell cycle suggested that the effect was mediated by the up-regulation of cyclin-dependent kinase inhibitors, p21Cip1 and p27Kip1. These are the first findings to demonstrate that infant hypervitaminosis A causes a severe anemia and thrombocytopenia and that this is probably due to the direct effect of the molecule on the growth of all bone marrow cellular components. Our data also suggest potential bone marrow functional alterations after excessive vitamin A intake because of emerging social habits

    Effect of vascular endothelial growth factor gene transfer on infarct size, left ventricular function and myocardial perfusion in sheep after 2months of coronary artery occlusion

    Get PDF
    Background: In large mammalian models of acute myocardial infarction (AMI), plasmid-mediated vascular endothelial growth factor (pVEGF) gene transfer has been shown to induce angio-arteriogenesis, proliferation of myocyte precursors and adult cardiomyocyte mitosis, reducing infarct size at 15days after coronary artery occlusion. However, it is unknown whether these effects persist at longer follow-up times, nor how they affect cardiac performance. We thus assessed infarct size, left ventricular (LV) function and perfusion in 2-month-old ovine AMI. Methods: Adult sheep with coronary artery occlusion were randomized to blindly receive ten intramyocardial injections of 3.8mg of pVEGF or empty plasmid distributed at the infarct border. Three and 60days later, LV perfusion (single-photon emission computed tomography) and function (stress echocardiography) were assessed. Finally, hemodynamics (LV catheterization), scar size and peri-infarct histology were studied. Results: Infarct size was 30% smaller in pVEGF-treated sheep (23.6±1.9% versus 32.7±2.7% of the LV; p<0.02). Percentage fractional shortening and wall thickening at the infarct border improved after pVEGF, as did myocardial perfusion and LV wall motion under pharmacological stress. Global LV function did not differ between groups, although the force-frequency response was preserved in pVEGF group and lost in placebo animals. These effects were associated with angio-arteriogenesis and proliferation of cardiomyocyte precursors. Conclusions: In sheep with AMI, pVEGF gene transfer affords long-term infarct size reduction, yielding regional LV function and perfusion improvement and reducing remodeling progression. These results suggest the potential usefulness of this approach in the clinical setting.Fil: Vera Janavel, Gustavo L.. Universidad Favaloro. Área de Investigación y Desarrollo; ArgentinaFil: De Lorenzi, Andrea. Fundación Favaloro; ArgentinaFil: Cortés, Claudia. Fundación Favaloro; ArgentinaFil: Olea, Fernanda Daniela. Universidad Favaloro. Área de Investigación y Desarrollo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cabeza Meckert, Patricia. Fundación Favaloro; ArgentinaFil: Bercovich, Andrés. Biosidus S. A.; ArgentinaFil: Criscuolo, Marcelo. Biosidus S. A.; ArgentinaFil: Laguens, Rubén. Universidad Favaloro. Área de Investigación y Desarrollo; ArgentinaFil: Crottogini, Alberto Jose. Universidad Favaloro. Área de Investigación y Desarrollo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Entry inhibition of HSV-1 and -2 protects mice from viral lethal challenge

    Get PDF
    The present study focused on inhibition of HSV-1 and -2 replication and pathogenesis in vitro and in vivo, through the selective targeting of the envelope glycoprotein D. Firstly, a human monoclonal antibody (Hu-mAb#33) was identified that could neutralise both HSV-1 and -2 at nM concentrations, including clinical isolates from patients affected by different clinical manifestations and featuring different susceptibility to acyclovir in vitro. Secondly, the potency of inhibition of both infection by cell-free viruses and cell-to-cell virus transmission was also assessed. Finally, mice receiving a single systemic injection of Hu-mAb#33 were protected from death and severe clinical manifestations following both ocular and vaginal HSV-1 and -2 lethal challenge. These results pave the way for further studies reassessing the importance of HSV entry as a novel target for therapeutic intervention and inhibition of cell-to-cell virus transmission

    Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology

    Get PDF
    Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes

    Role of metabolic reprogramming in the development of ovarian cancer platinum resistance

    No full text
    Ovarian cancer (OC) is the most aggressive gynecological malignancy. High grade serous ovarian cancer (HGSOC) is the most common and lethal type of ovarian cancer. Although HGSOC patients are initially extremely sensitive to standard first-line platinum-based chemotherapy, the majority relapse and progressively become chemoresistant. Resistance to platinum compounds results from multiple genetic and epigenetic mechanisms. In the last decade, it has become clear that metabolic changes affect drug response in several cancers, identifying metabolic reprogramming as an important mechanism of drug resistance. We have previously demonstrated, in patient-derived HGSOC cells, that platinum-resistance is driven by metabolic shift toward oxidative phosphorylation via activation of an inflammatory response. Interestingly, we identified low expression of the molecular chaperone TRAP1 as key determinant of the metabolic rewiring associated with cisplatin resistance, due to its involvement in the regulation of mitochondrial respiration. Starting from these observations, we aimed at further investigating the role of metabolic remodelling in the development of acquired resistance in HGSOC cells. To this purpose, we performed a multi-omics approach, including metabolomics and gene expression analysis, in order to identify the metabolic alterations present in drug-resistant cells. Cholesterol homeostasis and antioxidant defences emerged as dysregulated processes in chemoresistant cells. In this work, we demonstrate that platinum-resistant HGSOC cells exhibit a remodelling of cholesterol metabolism, with reduced cholesterol biosynthesis and increased uptake of exogenous cholesterol. Accordingly, enzymes involved in cholesterol synthesis such as FDPS and OSC are downregulated, whereas expression of LDL receptor, responsible for extracellular cholesterol uptake, is upregulated. Moreover, we show that reduced cholesterol biosynthesis is functional to the acquisition of drug resistance. Indeed, inhibition of cholesterol synthesis by lovastin reduces cisplatin-induced apoptosis in chemosensitive cells, while lipid stripping from culture media restores cisplatin sensitivity in chemoresistant cells, at least partially through a re-activation of cholesterol biosynthetic pathway. In patients, FDPS and LDLR show opposite correlation with overall survival, being the first directly associated to better survival and the latter associated to worse survival. In addition, we show that drug resistant cells exhibit unexpected alterations of the antioxidant network. Indeed, several studies have associated drug resistance with increased GSH levels, due to its role as cisplatin buffering system; conversely, GSH has also been reported to contribute to cisplatin-mediated cytotoxicity, as it is believed to be the main cytoplasmic target of cisplatin. We observed reduced intracellular GSH levels and compensatory increased expression of thioredoxin reductase in cisplatin-resistant cells. Accordingly, cisplatin-resistant cells show reduced levels of enzymes involved in GSH synthesis and increased sensitivity to oxidative stress inducers. Also, cisplatin treatment triggers accumulation of reduced GSH in both sensitive and resistant cells. Overall, our data highlight the important role played by rewired cholesterol metabolism in modulating cisplatin sensitivity and suggest that cisplatin treatment could positively select cancer cells which are independent of GSH for the maintenance of redox balance, and thus less sensitive to cisplatin-induced oxidative stress

    Modulation of mitochondrial metabolic reprogramming and oxidative stress to overcome chemoresistance in cancer

    No full text
    Metabolic reprogramming, carried out by cancer cells to rapidly adapt to stress such as hypoxia and limited nutrient conditions, is an emerging concepts in tumor biology, and is now recognized as one of the hallmarks of cancer. In contrast with conventional views, based on the classical Warburg effect, these metabolic alterations require fully functional mitochondria and finely-tuned regulations of their activity. In turn, the reciprocal regulation of the metabolic adaptations of cancer cells and the microenvironment critically influence disease progression and response to therapy. This is also realized through the function of specific stress-adaptive proteins, which are able to relieve oxidative stress, inhibit apoptosis, and facilitate the switch between metabolic pathways. Among these, the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), the most abundant heat shock protein 90 (HSP90) family member in mitochondria, is particularly relevant because of its role as an oncogene or a tumor suppressor, depending on the metabolic features of the specific tumor. This review highlights the interplay between metabolic reprogramming and cancer progression, and the role of mitochondrial activity and oxidative stress in this setting, examining the possibility of targeting pathways of energy metabolism as a therapeutic strategy to overcome drug resistance, with particular emphasis on natural compounds and inhibitors of mitochondrial HSP90s

    Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer

    No full text
    Metabolic reprogramming, carried out by cancer cells to rapidly adapt to stress such as hypoxia and limited nutrient conditions, is an emerging concepts in tumor biology, and is now recognized as one of the hallmarks of cancer. In contrast with conventional views, based on the classical Warburg effect, these metabolic alterations require fully functional mitochondria and finely-tuned regulations of their activity. In turn, the reciprocal regulation of the metabolic adaptations of cancer cells and the microenvironment critically influence disease progression and response to therapy. This is also realized through the function of specific stress-adaptive proteins, which are able to relieve oxidative stress, inhibit apoptosis, and facilitate the switch between metabolic pathways. Among these, the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), the most abundant heat shock protein 90 (HSP90) family member in mitochondria, is particularly relevant because of its role as an oncogene or a tumor suppressor, depending on the metabolic features of the specific tumor. This review highlights the interplay between metabolic reprogramming and cancer progression, and the role of mitochondrial activity and oxidative stress in this setting, examining the possibility of targeting pathways of energy metabolism as a therapeutic strategy to overcome drug resistance, with particular emphasis on natural compounds and inhibitors of mitochondrial HSP90s

    New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment

    No full text
    Abstract Background Novel therapeutic strategies are urgently needed for the treatment of metastatic Urothelial Bladder Cancer. DNA damaging repair (DDR) targeting has been introduced in cinical trials for bladder cancer patients that carry alterations in homologous DNA repair genes, letting to envisage susceptibility to the Poly (adenosine diphosphate [ADP]) ribose polymerase (PARP) inhibitors. Main body PARP inhibition, by amplifying the DNA damage, augments the mutational burden and promotes the immune priming of the tumor by increasing the neoantigen exposure and determining upregulation of programmed death ligand 1 (PD-L1) expression. Thus, the combination of PARP-inhibition and the PD/PD-L1 targeting may represent a compelling strategy to treat bladder cancer and has been introduced in recent clinical trials. The targeting of DDR has been also used in combination with epigenetic drugs able to modulate the expression of genes involved in DDR, and also able to act as immunomodulator agents suggesting their use in combination with immune-checkpoint inhibitors. Conclusion In conclusion, it may be envisaged the combination of three classes of drugs to treat bladder cancer, by targeting the DDR process in a tumor context of DDR defect, together with epigenetic agents and immune-checkpoint inhibitors, whose association may amplify the effects and reduce the doses and the toxicity of each single drug

    Insights into the Small Molecule Targeting of Biologically Relevant G-Quadruplexes: An Overview of NMR and Crystal Structures

    No full text
    G-quadruplexes turned out to be important targets for the development of novel targeted anticancer/antiviral therapies. More than 3000 G-quadruplex small-molecule ligands have been described, with most of them exerting anticancer/antiviral activity by inducing telomeric damage and/or altering oncogene or viral gene expression in cancer cells and viruses, respectively. For some ligands, in-depth NMR and/or crystallographic studies were performed, providing detailed knowledge on their interactions with diverse G-quadruplex targets. Here, the PDB-deposited NMR and crystal structures of the complexes between telomeric, oncogenic or viral G-quadruplexes and small-molecule ligands, of both organic and metal-organic nature, have been summarized and described based on the G-quadruplex target, from telomeric DNA and RNA G-quadruplexes to DNA oncogenic G-quadruplexes, and finally to RNA viral G-quadruplexes. An overview of the structural details of these complexes is here provided to guide the design of novel ligands targeting more efficiently and selectively cancer- and virus-related G-quadruplex structures
    corecore