164 research outputs found

    Differential typologies of current substance use among Black and White high-school adolescents: A latent class analysis

    Get PDF
    Black and White adolescents demonstrate different prototypical profiles (i.e., typologies) of substance use, with Blacks demonstrating lower risk for concurrent use of two or more substances. Despite knowledge of these differences, typologies of adolescent substance use identified by person-centered methods, such as latent class analysis, have not characterized profiles by racial group. The current study examined typologies of substance use among Black and White youth separately using person-centered methods to identify common patterns of substance use among subjects. Data were drawn from a 5-year parent study examining adolescent health outcomes. The current study examined high-school aged White (n = 7271, 45.4% male) and Black youth (n = 1301, 40.1% male) who reported past-30-day frequency of cigarette, alcohol, marijuana, inhalant, and other drug use. Latent class analysis was used to examine substance use typologies among each group adjusting for grade and sex. Black and White youth demonstrated different typologies such that four typologies emerged among Blacks: Non-Use (87.8%), Alcohol and Marijuana Use (6.3%), Alcohol, Marijuana, and Cigarette Use (3.8%), and Frequent Polysubstance Use (2.0%). Conversely, five typologies emerged among Whites: Non-Use (73.4%), Predominant Alcohol Use (13.9%), Alcohol, Marijuana, and Cigarette Use (9.4%), Moderate Polysubstance Use (1.6%), and Frequent Polysubstance Use (1.7%). Findings suggest that Black and White youth engage in similar rates of concurrent substance use. Given that Black youth face greater risk for adverse consequences from substance use, prevention efforts are needed to prevent related health disparities related to concurrent substance use

    Structural insights into TDP-43 in nucleic-acid binding and domain interactions

    Get PDF
    TDP-43 is a pathogenic protein: its normal function in binding to UG-rich RNA is related to cystic fibrosis, and inclusion of its C-terminal fragments in brain cells is directly linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here we report the 1.65 Å crystal structure of the C-terminal RRM2 domain of TDP-43 in complex with a single-stranded DNA. We show that TDP-43 is a dimeric protein with two RRM domains, both involved in DNA and RNA binding. The crystal structure reveals the basis of TDP-43's TG/UG preference in nucleic acids binding. It also reveals that RRM2 domain has an atypical RRM-fold with an additional β-strand involved in making protein–protein interactions. This self association of RRM2 domains produced thermal-stable RRM2 assemblies with a melting point greater than 85°C as monitored by circular dichroism at physiological conditions. These studies thus characterize the recognition between TDP-43 and nucleic acids and the mode of RRM2 self association, and provide molecular models for understanding the role of TDP-43 in cystic fibrosis and the neurodegenerative diseases related to TDP-43 proteinopathy

    Device-Measured Change in Physical Activity in Primary School Children During the UK COVID-19 Pandemic Lockdown:A Longitudinal Study

    Get PDF
    Background: Lockdown measures, including school closures, due to the COVID-19 pandemic have caused widespread disruption to children’s lives. The aim of this study was to explore the impact of a national lockdown on children’s physical activity using seasonally matched accelerometry data. Methods: Using a pre/post observational design, 179 children aged 8 to 11 years provided physical activity data measured using hip-worn triaxial accelerometers worn for 5 consecutive days prepandemic and during the January to March 2021 lockdown. Multilevel regression analyses adjusted for covariates were used to assess the impact of lockdown on time spent in sedentary and moderate to vigorous physical activity. Results: A 10.8-minute reduction in daily time spent in moderate to vigorous physical activity (standard error: 2.3 min/d, P < .001) and a 33.2-minute increase in daily sedentary activity (standard error: 5.5 min/d, P < .001) were observed during lockdown. This reflected a reduction in daily moderate to vigorous physical activity for those unable to attend school (−13.1 [2.3] min/d, P < .001) during lockdown, with no significant change for those who continued to attend school (0.4 [4.0] min/d, P < .925). Conclusion: These findings suggest that the loss of in-person schooling was the single largest impact on physical activity in this cohort of primary school children in London, Luton, and Dunstable, United Kingdom

    Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease

    Get PDF
    During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente

    Expression and Function of Macrophage Migration Inhibitory Factor (MIF) in Melioidosis

    Get PDF
    Melioidosis is a severe tropical infection caused by the bacterium Burkholderia pseudomallei. B. pseudomallei is the major cause of community-acquired septicemia in northeast Thailand with a mortality rate in severe cases of around 40% Little is known, however, about the mechanisms of the host defense to B. pseudomallei infection. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has emerged as an important mediator of the host defense in severe bacterial infections. In this article, we studied the expression and function of MIF both in patients with melioidosis and in mice during experimental melioidosis. We found that MIF concentrations were elevated in patients with melioidosis. Furthermore, high MIF concentrations are associated with poor outcome in patients with melioidosis. Also, in mice with experimentally induced melioidosis, we observed an upregulation of MIF concentrations. Furthermore, mice with melioidosis that were treated with a MIF blocking treatment showed lower bacterial counts in their lungs during infection. In conclusion, MIF seems to impair host defense mechanisms during melioidosis

    Epilepsy Caused by an Abnormal Alternative Splicing with Dosage Effect of the SV2A Gene in a Chicken Model

    Get PDF
    Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments

    Principles of Hand Fracture Management

    Get PDF
    The hand is essential in humans for physical manipulation of their surrounding environment. Allowing the ability to grasp, and differentiated from other animals by an opposing thumb, the main functions include both fine and gross motor skills as well as being a key tool for sensing and understanding the immediate surroundings of their owner
    corecore