74 research outputs found

    Long term time variability of cosmic rays and possible relevance to the development of life on Earth

    Full text link
    An analysis is made of the manner in which the cosmic ray intensity at Earth has varied over its existence and its possible relevance to both the origin and the evolution of life. Much of the analysis relates to the 'high energy' cosmic rays (E>1014eV;=0.1PeVE>10^{14}eV;=0.1PeV) and their variability due to the changing proximity of the solar system to supernova remnants which are generally believed to be responsible for most cosmic rays up to PeV energies. It is pointed out that, on a statistical basis, there will have been considerable variations in the likely 100 My between the Earth's biosphere reaching reasonable stability and the onset of very elementary life. Interestingly, there is the increasingly strong possibility that PeV cosmic rays are responsible for the initiation of terrestrial lightning strokes and the possibility arises of considerable increases in the frequency of lightnings and thereby the formation of some of the complex molecules which are the 'building blocks of life'. Attention is also given to the well known generation of the oxides of nitrogen by lightning strokes which are poisonous to animal life but helpful to plant growth; here, too, the violent swings of cosmic ray intensities may have had relevance to evolutionary changes. A particular variant of the cosmic ray acceleration model, put forward by us, predicts an increase in lightning rate in the past and this has been sought in Korean historical records. Finally, the time dependence of the overall cosmic ray intensity, which manifests itself mainly at sub-10 GeV energies, has been examined. The relevance of cosmic rays to the 'global electrical circuit' points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics

    Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation

    Get PDF
    Contains fulltext : 169681.pdf (publisher's version ) (Open Access)Heterozygous mutations or deletions of the human Euchromatin Histone Methyltransferase 1 (EHMT1) gene are the main causes of Kleefstra syndrome, a neurodevelopmental disorder that is characterized by impaired memory, autistic features and mostly severe intellectual disability. Previously, Ehmt1+/- heterozygous knockout mice were found to exhibit cranial abnormalities and decreased sociability, phenotypes similar to those observed in Kleefstra syndrome patients. In addition, Ehmt1+/- knockout mice were impaired at fear extinction and novel- and spatial object recognition. In this study, Ehmt1+/- and wild-type mice were tested on several cognitive tests in a touchscreen-equipped operant chamber to further investigate the nature of learning and memory changes. Performance of Ehmt1+/- mice in the Visual Discrimination &Reversal learning, object-location Paired-Associates learning- and Extinction learning tasks was found to be unimpaired. Remarkably, Ehmt1+/- mice showed enhanced performance on the Location Discrimination test of pattern separation. In line with improved Location Discrimination ability, an increase in BrdU-labelled cells in the subgranular zone of the dentate gyrus was observed. In conclusion, reduced levels of EHMT1 protein in Ehmt1+/- mice does not result in general learning deficits in a touchscreen-based battery, but leads to increased adult cell proliferation in the hippocampus and enhanced pattern separation ability

    Mitochondrial DNA Variation, but Not Nuclear DNA, Sharply Divides Morphologically Identical Chameleons along an Ancient Geographic Barrier

    Get PDF
    The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel) into two subspecies, Chamaeleo chamaeleon recticrista (CCR) and C. c. musae (CCM). CCR mostly inhabits the Mediterranean climate (northern Israel), while CCM inhabits the sands of the north-western Negev Desert (southern Israel). AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097), consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA) fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79), which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp) generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient) local adaptation to mitochondrial-related traits

    Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity

    Get PDF
    Although animals are among the best studied organisms, we still lack a full description of their diversity, especially for microscopic taxa. This is partly due to the time-consuming and costly nature of surveying animal diversity through morphological and molecular studies of individual taxa. A powerful alternative is the use of high-throughput environmental sequencing, providing molecular data from all organisms sampled. We here address the unknown diversity of animal phyla in marine environments using an extensive dataset designed to assess eukaryotic ribosomal diversity among European coastal locations. A multi-phylum assessment of marine animal diversity that includes water column and sediments, oxic and anoxic environments, and both DNA and RNA templates, revealed a high percentage of novel 18S rRNA sequences in most phyla, suggesting that marine environments have not yet been fully sampled at a molecular level. This novelty is especially high among Platyhelminthes, Acoelomorpha, and Nematoda, which are well studied from a morphological perspective and abundant in benthic environments. We also identified, based on molecular data, a potentially novel group of widespread tunicates. Moreover, we recovered a high number of reads for Ctenophora and Cnidaria in the smaller fractions suggesting their gametes might play a greater ecological role than previously suspected

    Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

    Get PDF
    BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes

    Plastic and Heritable Components of Phenotypic Variation in Nucella lapillus: An Assessment Using Reciprocal Transplant and Common Garden Experiments

    Get PDF
    Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F2s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F1s than F2s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal

    Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats

    Get PDF
    Rationale: Stress elicits functional and structural changes in the hippocampus. Early life stress is one of the major risk factors for stress-related pathologies like depression. Patients suffering from depression show a reduced hippocampal volume, and in women, this occurs more often when depression is preceded by childhood trauma. However, the underlying mechanisms that account for a reduced hippocampal volume are unknown. Objective: We examined the effects of maternal absence on structure and function of the hippocampus in female offspring. Methods: We studied whether 24 h of maternal deprivation (MD) on postnatal day 3 altered adult neurogenesis, individual neuronal morphology and dentate gyrus (DG) structure in young adult female rats. In addition, functional alterations were addressed by studying synaptic plasticity in vitro, and spatial as well as emotional learning was tested. Results: Adult females that were subjected to MD revealed significant reductions in DG granule cell number and density. In addition, DG neurons were altered in their dendritic arrangement. No effects on the rate of adult neurogenesis were found. Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions. In addition, spatial learning and contextual fear conditioning were comparable between control and MD animals. However, MD animals showed an improved amygdala-dependent fear memory. Conclusion: Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers. This may be relevant for the reduced hippocampal volume observed in depression and the increased vulnerability of women to develop depression

    Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    Get PDF
    Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo

    The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain

    Full text link
    [EN] Phytophthora is one of the most important and aggressive plant pathogenic genera in agriculture and forestry. Early detection and identification of its pathways of infection and spread are of high importance to minimize the threat they pose to natural ecosystems. eDNA was extracted from soil and water from forests and plantations in the north of Spain. Phytophthora-specific primers were adapted for use in high-throughput Sequencing (HTS). Primers were tested in a control reaction containing eight Phytophthora species and applied to water and soil eDNA samples from northern Spain. Different score coverage threshold values were tested for optimal Phytophthora species separation in a custom-curated database and in the control reaction. Clustering at 99% was the optimal criteria to separate most of the Phytophthora species. Multiple Molecular Operational Taxonomic Units (MOTUs) corresponding to 36 distinct Phytophthora species were amplified in the environmental samples. Pyrosequencing of amplicons from soil samples revealed low Phytophthora diversity (13 species) in comparison with the 35 species detected in water samples. Thirteen of the MOTUs detected in rivers and streams showed no close match to sequences in international sequence databases, revealing that eDNA pyrosequencing is a useful strategy to assess Phytophthora species diversity in natural ecosystems.This project has been supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (EUPHRESCO-CEP: "Current and Emerging Phytophthoras: Research Supporting Risk Assessment And Risk Management"). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Català, S.; Pérez Sierra, AM.; Abad Campos, P. (2015). The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain. PLoS ONE. 10(3):1-14. doi:10.1371/journal.pone.0119311S114103REICHARD, S. H., & WHITE, P. (2001). Horticulture as a Pathway of Invasive Plant Introductions in the United States. BioScience, 51(2), 103. doi:10.1641/0006-3568(2001)051[0103:haapoi]2.0.co;2Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57(5), 792-808. doi:10.1111/j.1365-3059.2008.01886.xTABERLET, P., COISSAC, E., HAJIBABAEI, M., & RIESEBERG, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789-1793. doi:10.1111/j.1365-294x.2012.05542.xSogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., … Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored «rare biosphere». Proceedings of the National Academy of Sciences, 103(32), 12115-12120. doi:10.1073/pnas.0605127103Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., … Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1(4), 283-290. doi:10.1038/ismej.2007.53Acosta-Martínez, V., Dowd, S., Sun, Y., & Allen, V. (2008). Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, 40(11), 2762-2770. doi:10.1016/j.soilbio.2008.07.022Jumpponen, A., & Jones, K. L. (2009). Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperateQuercus macrocarpaphyllosphere. New Phytologist, 184(2), 438-448. doi:10.1111/j.1469-8137.2009.02990.xNilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296(1), 97-101. doi:10.1111/j.1574-6968.2009.01618.xCoince, A., Caël, O., Bach, C., Lengellé, J., Cruaud, C., Gavory, F., … Buée, M. (2013). Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecology, 6(3), 223-235. doi:10.1016/j.funeco.2013.01.002Vannini, A., Bruni, N., Tomassini, A., Franceschini, S., & Vettraino, A. M. (2013). Pyrosequencing of environmental soil samples reveals biodiversity of thePhytophthoraresident community in chestnut forests. FEMS Microbiology Ecology, 85(3), 433-442. doi:10.1111/1574-6941.12132Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). «Sight-unseen» detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157. doi:10.1111/j.1755-263x.2010.00158.xMonchy, S., Sanciu, G., Jobard, M., Rasconi, S., Gerphagnon, M., Chabé, M., … Sime-Ngando, T. (2011). Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environmental Microbiology, 13(6), 1433-1453. doi:10.1111/j.1462-2920.2011.02444.xJobard, M., Rasconi, S., Solinhac, L., Cauchie, H.-M., & Sime-Ngando, T. (2012). Molecular and morphological diversity of fungi and the associated functions in three European nearby lakes. Environmental Microbiology, 14(9), 2480-2494. doi:10.1111/j.1462-2920.2012.02771.xLivermore, J. A., & Mattes, T. E. (2013). Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environmental Microbiology, 15(8), 2333-2341. doi:10.1111/1462-2920.12106NAKAYAMA, J., JIANG, J., WATANABE, K., CHEN, K., NINXIN, H., MATSUDA, K., … LEE, Y.-K. (2013). Up to Species-level Community Analysis of Human Gut Microbiota by 16S rRNA Amplicon Pyrosequencing. Bioscience of Microbiota, Food and Health, 32(2), 69-76. doi:10.12938/bmfh.32.69CREER, S., & SINNIGER, F. (2012). Cosmopolitanism of microbial eukaryotes in the global deep seas. Molecular Ecology, 21(5), 1033-1035. doi:10.1111/j.1365-294x.2012.05437.xDavey, M. L., Heegaard, E., Halvorsen, R., Kauserud, H., & Ohlson, M. (2012). Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Molecular Ecology, 22(2), 368-383. doi:10.1111/mec.12122Weber, C. F., Vilgalys, R., & Kuske, C. R. (2013). Changes in Fungal Community Composition in Response to Elevated Atmospheric CO2 and Nitrogen Fertilization Varies with Soil Horizon. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00078Bergmark, L., Poulsen, P. H. B., Al-Soud, W. A., Norman, A., Hansen, L. H., & Sørensen, S. J. (2012). Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiology Letters, 333(1), 77-84. doi:10.1111/j.1574-6968.2012.02601.xLi, L., Abu Al-Soud, W., Bergmark, L., Riber, L., Hansen, L. H., Magid, J., & Sørensen, S. J. (2013). Investigating the Diversity of Pseudomonas spp. in Soil Using Culture Dependent and Independent Techniques. Current Microbiology, 67(4), 423-430. doi:10.1007/s00284-013-0382-xSCHENA, L., HUGHES, K. J. D., & COOKE, D. E. L. (2006). Detection and quantification ofPhytophthora ramorum,P. kernoviae,P. citricolaandP. quercinain symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7(5), 365-379. doi:10.1111/j.1364-3703.2006.00345.xTooley, P. W., Martin, F. N., Carras, M. M., & Frederick, R. D. (2006). Real-Time Fluorescent Polymerase Chain Reaction Detection ofPhytophthora ramorumandPhytophthora pseudosyringaeUsing Mitochondrial Gene Regions. Phytopathology, 96(4), 336-345. doi:10.1094/phyto-96-0336Pavón, C. F., Babadoost, M., & Lambert, K. N. (2008). Quantification of Phytophthora capsici Oospores in Soil by Sieving-Centrifugation and Real-Time Polymerase Chain Reaction. Plant Disease, 92(1), 143-149. doi:10.1094/pdis-92-1-0143Than, D. J., Hughes, K. J. D., Boonhan, N., Tomlinson, J. A., Woodhall, J. W., & Bellgard, S. E. (2013). A TaqMan real-time PCR assay for the detection ofPhytophthora‘taxon Agathis’ in soil, pathogen of Kauri in New Zealand. Forest Pathology, 43(4), 324-330. doi:10.1111/efp.12034Chen, W., Djama, Z. R., Coffey, M. D., Martin, F. N., Bilodeau, G. J., Radmer, L., … Lévesque, C. A. (2013). Membrane-Based Oligonucleotide Array Developed from Multiple Markers for the Detection of Many Phytophthora Species. Phytopathology, 103(1), 43-54. doi:10.1094/phyto-04-12-0092-rScibetta, S., Schena, L., Chimento, A., Cacciola, S. O., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88(3), 356-368. doi:10.1016/j.mimet.2011.12.012Català S, Pérez-Sierra A, Berbegal M, Abad-Campos P. First approach into the knowledge of the Phytophthora species diversity in Mediterranean holm oak forests based on 454 parallel amplicon pyrosequencing of soil samples. Phytophthora in Forest and Natural Ecosystems 6th International IUFRO Working Party 7.02.09 Meeting, Córdoba, Spain, pp 34; 2012.Català S, Pérez-Sierra A, Beltrán A, Abad-Campos P. Next Generation Sequencing shows Phytophthora species diversity in soil samples of Macaronesian laurel forests from the Canary Islands. Phytophthora in Forest and Natural Ecosystems 6th International IUFRO Working Party 7.02.09 Meeting, Córdoba, Spain, pp. 86; 2012.Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A Molecular Phylogeny of Phytophthora and Related Oomycetes. Fungal Genetics and Biology, 30(1), 17-32. doi:10.1006/fgbi.2000.1202Andrews S. FastQC: a quality control tool for high throughput sequence data. Available: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/Chou, H.-H., & Holmes, M. H. (2001). DNA sequence quality trimming and vector removal. Bioinformatics, 17(12), 1093-1104. doi:10.1093/bioinformatics/17.12.1093Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution, 27(2), 221-224. doi:10.1093/molbev/msp259Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y.-H., Blair, J. E., … Kang, S. (2008). Phytophthora Database: A Forensic Database Supporting the Identification and Monitoring of Phytophthora. Plant Disease, 92(6), 966-972. doi:10.1094/pdis-92-6-0966Vettraino, A. M., Bonants, P., Tomassini, A., Bruni, N., & Vannini, A. (2012). Pyrosequencing as a tool for the detection ofPhytophthoraspecies: error rate and risk of false Molecular Operational Taxonomic Units. Letters in Applied Microbiology, 55(5), 390-396. doi:10.1111/j.1472-765x.2012.03310.xJung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia - Molecular Phylogeny and Evolution of Fungi, 22(1), 95-110. doi:10.3767/003158509x442612Deagle, B. E., Eveson, J. P., & Jarman, S. N. (2006). Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Frontiers in Zoology, 3(1). doi:10.1186/1742-9994-3-11Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE, 6(8), e23398. doi:10.1371/journal.pone.0023398Guha Roy S, Grunwald NJ. The plant destroyer genus Phytophthora in the 21st century. In book: Review of Plant Pathology, Edition: Volume 6, Publisher: Scientific Publishers (India), Jodhpur, Editors: B.N.Chakraborty, B.B.L.Thakore, pp. In press; 2014.Brasier, C. M., Cooke, D. E. L., Duncan, J. M., & Hansen, E. M. (2003). Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycological Research, 107(3), 277-290. doi:10.1017/s095375620300738xHüberli, D., Hardy, G. E. S. J., White, D., Williams, N., & Burgess, T. I. (2013). Fishing for Phytophthora from Western Australia’s waterways: a distribution and diversity survey. Australasian Plant Pathology, 42(3), 251-260. doi:10.1007/s13313-012-0195-6Jung, T., Stukely, M. J. C., Hardy, G. E. S. J., White, D., Paap, T., Dunstan, W. A., & Burgess, T. I. (2011). Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia - Molecular Phylogeny and Evolution of Fungi, 26(1), 13-39. doi:10.3767/003158511x557577Brasier, C. M., Sanchez-Hernandez, E., & Kirk, S. A. (2003). Phytophthora inundata sp. nov., a part heterothallic pathogen of trees and shrubs in wet or flooded soils. Mycological Research, 107(4), 477-484. doi:10.1017/s0953756203007548Hansen, E. M., Reeser, P. W., & Sutton, W. (2012). PhytophthoraBeyond Agriculture. Annual Review of Phytopathology, 50(1), 359-378. doi:10.1146/annurev-phyto-081211-172946Reeser, P. W., Sutton, W., Hansen, E. M., Remigi, P., & Adams, G. C. (2011). Phytophthora species in forest streams in Oregon and Alaska. Mycologia, 103(1), 22-35. doi:10.3852/10-013Nechwatal, J., Bakonyi, J., Cacciola, S. O., Cooke, D. E. L., Jung, T., Nagy, Z. Á., … Brasier, C. M. (2012). The morphology, behaviour and molecular phylogeny ofPhytophthorataxon Salixsoil and its redesignation asPhytophthora lacustrissp. nov. Plant Pathology, 62(2), 355-369. doi:10.1111/j.1365-3059.2012.02638.xHuai, W. -x., Tian, G., Hansen, E. M., Zhao, W. -x., Goheen, E. M., Grünwald, N. J., & Cheng, C. (2013). Identification ofPhytophthoraspecies baited and isolated from forest soil and streams in northwestern Yunnan province, China. Forest Pathology, 43(2), 87-103. doi:10.1111/efp.12015Oh, E., Gryzenhout, M., Wingfield, B. D., Wingfield, M. J., & Burgess, T. I. (2013). Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus, 4(1), 123-131. doi:10.5598/imafungus.2013.04.01.1

    A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome

    Get PDF
    Fruit and vegetable consumption has been associated with several health benefits; however the mechanisms are largely unknown at the biochemical level. Our research aims to investigate whether plasma metabolome profiling can reflect biological effects after feeding rats with raw apple by using an untargeted UPLC-ESI-TOF-MS based metabolomics approach in both positive and negative mode. Eighty young male rats were randomised into groups receiving daily 0, 5 or 10 g fresh apple slices, respectively, for 13 weeks. During weeks 3-6 some of the animals were receiving 4 mg/ml 1,2-dimethylhydrazine dihydrochloride (DMH) once a week. Plasma samples were taken at the end of the intervention and among all groups, about half the animals were 12 h fasted. An initial ANOVA-simultaneous component analysis with a three-factor or two-factor design was employed in order to isolate potential metabolic variations related to the consumption of fresh apples. Partial least squares-discriminant analysis was then applied in order to select discriminative features between plasma metabolites in control versus apple fed rats and partial least squares modelling to reveal possible dose response. The findings indicate that in laboratory rats apple feeding may alter the microbial amino acid fermentation, lowering toxic metabolites from amino acids metabolism and increasing metabolism into more protective products. It may also delay lipid and amino acid catabolism, gluconeogenesis, affect other features of the transition from the postprandial to the fasting state and affect steroid metabolism by suppressing the plasma level of stress corticosteroids, certain mineralocorticoids and oxidised bile acid metabolites. Several new hypotheses regarding the cause of health effects from apple intake can be generated from this study for further testing in humans. Š 2013 Springer Science+Business Media New York
    • …
    corecore