14 research outputs found

    Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis

    Full text link
    Murine inflammatory caspase-11 has an important role in intestinal epithelial inflammation and barrier function. Activation of the non-canonical inflammasome, mediated by caspase-11, serves as a regulatory pathway for the production of the proinflammatory cytokines IL-1β and IL-18, and has a key role in pyroptotic cell death. We have previously demonstrated a protective role for caspase-11 during dextran sulphate sodium (DSS)-induced colitis, however the importance of caspase-11 during colorectal tumour development remains unclear. Here, we show that Casp11−/− mice are highly susceptible to the azoxymethane (AOM)-DSS model of colitis-associated cancer (CAC), compared to their wild type (WT) littermates. We show that deficient IL-18 production occurs at initial inflammation stages of disease, and that IL-1β production is more significantly impaired in Casp11−/− colons during established CAC. We identify defective STAT1 activation in Casp11−/− colons during disease progression, and show that IL-1β signalling induces caspase-11 expression and STAT1 activation in primary murine macrophages and intestinal epithelial cells. These findings uncover an anti-tumour role for the caspase-11 and the non-canonical inflammasome during CAC, and suggest a critical role for caspase-11, linking IL-1β and STAT1 signalling pathways

    Bacterial microcompartment-mediated ethanolamine metabolism in E. coli urinary tract infection

    Get PDF
    Urinary tract infections (UTIs) are common, in general caused by intestinal Uropathogenic E.coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels competitive overgrowth of intestinal E. coli, both pathogenic enterohaemorrhagic E. coli and commensal strains. During UTI urease negative E. coli thrive, despite the comparative nutrient limitation in urine. The role of ethanolamine as a potential nutrient source during UTI is understudied. We evaluated the role of metabolism of ethanolamine as a potential nitrogen and carbon source for UPEC in the urinary tract. We analysed infected urine samples by culture, HPLC, qRT-PCR and genomic sequencing. Ethanolamine concentration in urine was comparable to the most abundant reported urinary amino acid D-serine. Transcription of the eut operon was detected in the majority of urine samples screened containing E. coli. All sequenced UPECs had conserved eut operons while metabolic genotypes previously associated with UTI (dsdCXA, metE) were mainly limited to phylogroup B2. In vitro ethanolamine was found to be utilised as a sole source of nitrogen by UPECs. Metabolism of ethanolamine in artificial urine medium (AUM) induced metabolosome formation and provided a growth advantage at the physiological levels found in urine. Interestingly, eutE (acetaldehyde dehydrogenase) was required for UPECs to utilise ethanolamine to gain a growth advantage in AUM, suggesting ethanolamine is also utilised as a carbon source. This data suggests urinary ethanolamine is a significant additional carbon and nitrogen source for infecting E. coli

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Protective role for caspase-11 during acute experimental murine colitis.

    No full text
    Activation of the noncanonical inflammasome, mediated by caspase-11, serves as an additional pathway for the production of the proinflammatory cytokines IL-1? and IL-18. Noncanonical inflammasome activity occurs during host defense against Gram-negative bacteria and in models of acute septic shock. We propose that the noncanonical inflammasome is activated in mice during acute intestinal inflammation elicited by dextran sodium sulfate (DSS), a model of experimental colitis. We find that caspase-11?/? mice display enhanced susceptibility to DSS, because of impaired IL-18 production. The impaired IL-18 levels observed are shown to result in reduced intestinal epithelial cell proliferation and increased cell death. We also suggest that a novel type II IFN?dependent, type I IFN-TRIF?independent signaling pathway is required for in vivo caspase-11 production in intestinal epithelial cells during DSS colitis. Collectively, these data suggest that IFN-??mediated caspase-11 expression has a key role maintaining intestinal epithelial barrier integrity in vivo during experimentally induced acute colitis

    Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis

    No full text
    Murine inflammatory caspase-11 has an important role in intestinal epithelial inflammation and barrier function. Activation of the non-canonical inflammasome, mediated by caspase-11, serves as a regulatory pathway for the production of the pro-inflammatory cytokines IL-1? and IL-18, and has a key role in pyroptotic cell death. We have previously demonstrated a protective role for caspase-11 during dextran sulphate sodium (DSS)-induced colitis, however the importance of caspase-11 during colorectal tumour development remains unclear. Here, we show that Casp11?/? mice are highly susceptible to the azoxymethane (AOM)-DSS model of colitis-associated cancer (CAC), compared to their wild type (WT) littermates. We show that deficient IL-18 production occurs at initial inflammation stages of disease, and that IL-1?production is more significantly impaired inCasp11?/? colons during established CAC. We identify defective STAT1 activation in Casp11?/? colons during disease progression, and show that IL-1? signalling induces caspase-11 expression and STAT1 activation in primary murine macrophages and intestinal epithelial cells. These findings uncover an anti-tumour role for the caspase-11and the non-canonical inflammasome during CAC, and suggest a critical role for caspase-11, linking IL-1 ? and STAT1 signalling pathways

    Poor timing and failure of source control are risk factors for mortality in critically ill patients with secondary peritonitis

    No full text
    Purpose: To describe data on epidemiology, microbiology, clinical characteristics and outcome of adult patients admitted in the intensive care unit (ICU) with secondary peritonitis, with special emphasis on antimicrobial therapy and source control. Methods: Post hoc analysis of a multicenter observational study (Abdominal Sepsis Study, AbSeS) including 2621 adult ICU patients with intra-abdominal infection in 306 ICUs from 42 countries. Time-till-source control intervention was calculated as from time of diagnosis and classified into 'emergency' (< 2 h), 'urgent' (2-6 h), and 'delayed' (> 6 h). Relationships were assessed by logistic regression analysis and reported as odds ratios (OR) and 95% confidence interval (CI). Results: The cohort included 1077 cases of microbiologically confirmed secondary peritonitis. Mortality was 29.7%. The rate of appropriate empiric therapy showed no difference between survivors and non-survivors (66.4% vs. 61.3%, p = 0.1). A stepwise increase in mortality was observed with increasing Sequential Organ Failure Assessment (SOFA) scores (19.6% for a value ≤ 4-55.4% for a value > 12, p < 0.001). The highest odds of death were associated with septic shock (OR 3.08 [1.42-7.00]), late-onset hospital-acquired peritonitis (OR 1.71 [1.16-2.52]) and failed source control evidenced by persistent inflammation at day 7 (OR 5.71 [3.99-8.18]). Compared with 'emergency' source control intervention (< 2 h of diagnosis), 'urgent' source control was the only modifiable covariate associated with lower odds of mortality (OR 0.50 [0.34-0.73]). Conclusion: 'Urgent' and successful source control was associated with improved odds of survival. Appropriateness of empirical antimicrobial treatment did not significantly affect survival suggesting that source control is more determinative for outcome

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: "AbSeS", a multinational observational cohort study and ESICM Trials Group Project

    No full text
    PURPOSE: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). METHODS: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. RESULTS: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. CONCLUSION: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection.status: publishe
    corecore