1,225 research outputs found

    High Velocity Cloud Complex H: A Satellite of the Milky Way in a Retrograde Orbit?

    Full text link
    Observations with the Green Bank Telescope of 21cm HI emission from the high-velocity cloud Complex H suggest that it is interacting with the Milky Way. A model in which the cloud is a satellite of the Galaxy in an inclined, retrograde circular orbit reproduces both the cloud's average velocity and its velocity gradient with latitude. The model places Complex H at approximately 33 kpc from the Galactic Center on a retrograde orbit inclined about 45 degrees to the Galactic plane. At this location it has an HI mass > 6 10^6 Msun and dimensions of at least 10 by 5 kpc. Some of the diffuse HI associated with the cloud has apparently been decelerated by interaction with Galactic gas. Complex H has similarities to the dwarf irregular galaxy Leo A and to some compact high-velocity clouds, and has an internal structure nearly identical to parts of the Magellanic Stream, with a pressure P/k about 100 cm^{-3} K.Comment: 12 pages includes 4 figures. To be published in Astrophysical Journal Letters, 1 July 200

    Ambiguity, multiple streams, and EU policy

    Get PDF
    The multiple streams framework draws insight from interactions between agency and institutions to explore the impact of context, time, and meaning on policy change and to assess the institutional and issue complexities permeating the European Union (EU) policy process. The authors specify the assumptions and structure of the framework and review studies that have adapted it to reflect more fully EU decision-making processes. The nature of policy entrepreneurship and policy windows are assessed to identify areas of improvement. Finally, the authors sketch out a research agenda that refines the logic of political manipulation which permeates the lens and the institutional complexity which frames the EU policy process

    A review of paediatric injectable drug delivery to inform the study of product acceptability – An introduction

    Get PDF
    Aim: The EMA defines acceptability as “the overall ability and willingness of the patient to use, and their caregiver to administer, the medicine as intended” [1]. This paper seeks to outline issues of acceptability in relation to injectable therapy, namely intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration routes, and to lay a foundation to identify a minimum set of data that would satisfy Regulatory Authorities when discussing the acceptability of an injectable product. In addition, it will alert drug product developers to other factors that might contribute to good practice, alternative administration strategies and overall adherence to achieve successful treatment. Whilst the term ‘parenteral’ means “outside the intestine” [2,3] and so potentially covers a range of administration routes including intranasal and percutaneous administration, this review focuses on IV, IM and SC administration by injection. The use of indwelling canulae or catheters to reduce venepuncture and facilitate prolonged treatment is common and may impact acceptability [4]. This may be influenced by information provided by the manufacturer but is not always in their direct control. Other injectable products suitable for routes such as intradermal, intra-articular, intraosseous and intrathecal, share the requirement to be acceptable but are not specifically covered in this paper [2,5]

    The Tully-Fisher Relation and H_not

    Full text link
    The use of the Tully-Fisher (TF) relation for the determination of the Hubble Constant relies on the availability of an adequate template TF relation and of reliable primary distances. Here we use a TF template relation with the best available kinematical zero-point, obtained from a sample of 24 clusters of galaxies extending to cz ~ 9,000 km/s, and the most recent set of Cepheid distances for galaxies fit for TF use. The combination of these two ingredients yields H_not = 69+/-5 km/(s Mpc). The approach is significantly more accurate than the more common application with single cluster (e.g. Virgo, Coma) samples.Comment: 10 pages, including 2 figures and 1 table; uses AAS LaTex. Submitted to ApJ Letter

    tert-Butyl 3-[2,2-bis­(ethoxy­carbon­yl)­vinyl]-2-methyl-1H-indole-1-carboxyl­ate

    Get PDF
    In the title compound, C22H27NO6, the indole ring system is planar and the ethoxy­carbonyl chains adopt extended conformations. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur, resulting in R 2 2(16) dimers, which are inter­linked into a chain propagating along the a axis by π–π stacking inter­actions [centroid–centroid distance 3.5916 (9) Å]

    A Very Sensitive 21cm Survey for Galactic High-Velocity HI

    Get PDF
    Very sensitive HI 21cm observations have been made in 860 directions at dec >= -43deg in search of weak, Galactic, high-velocity HI emission lines at moderate and high Galactic latitudes. One-third of the observations were made toward extragalactic objects. The median 4-sigma detection level is NHI = 8x10^{17} cm^-2 over the 21' telescope beam. High-velocity HI emission is detected in 37% of the directions; about half of the lines could not have been seen in previous surveys. The median FWHM of detected lines is 30.3 km/s. High- velocity HI lines are seen down to the sensitivity limit of the survey implying that there are likely lines at still lower values of NHI. The weakest lines have a kinematics and distribution on the sky similar to that of the strong lines, and thus do not appear to be a new population. Most of the emission originates from objects which are extended over several degrees; few appear to be compact sources. At least 75%, and possibly as many as 90%, of the lines are associated with one of the major high-velocity complexes. The Magellanic Stream extends at least 10 deg to higher Galactic latitude than previously thought and is more extended in longitude as well. Although there are many lines with low column density, their numbers do not increase as rapidly as NHI^-1, so most of the HI mass in the high-velocity cloud phenomenon likely resides in the more prominent clouds. The bright HI features may be mere clumps within larger structures, and not independent objects.Comment: 88 pages includes 22 figures Accepted for Publication in ApJ Suppl. June 200

    Learning in the European Union: Theoretical Lenses and Meta-Theory

    Get PDF
    notes: This paper is based on research carried out with the support of the European Research Council grant on Analysis of Learning in Regulatory Governance, ALREG http://centres.exeter.ac.uk/ceg/research/ALREG/index.php. The authors wish to express their gratitude to the other authors in this special edition and in particular its editor, Nikos Zaharaidis and X anonymous referees.publication-status: AcceptedThe European Union may well be a learning organization, yet there is still confusion about the nature of learning, its causal structure and the normative implications. In this article we select four perspectives that address complexity, governance, the agency-structure nexus, and how learning occurs or may be blocked by institutional features. They are transactional theory, purposeful opportunism, experimental governance, and the joint decision trap. We use the four cases to investigate how history and disciplinary traditions inform theory; the core causal arguments about learning; the normative implications of the analysis; the types of learning that are theoretically predicted; the meta-theoretical aspects and the lessons for better theories of the policy process and political scientists more generally

    The Effects of Atmospheric Dispersion on High-Resolution Solar Spectroscopy

    Full text link
    We investigate the effects of atmospheric dispersion on observations of the Sun at the ever-higher spatial resolutions afforded by increased apertures and improved techniques. The problems induced by atmospheric refraction are particularly significant for solar physics because the Sun is often best observed at low elevations, and the effect of the image displacement is not merely a loss of efficiency, but the mixing of information originating from different points on the solar surface. We calculate the magnitude of the atmospheric dispersion for the Sun during the year and examine the problems produced by this dispersion in both spectrographic and filter observations. We describe an observing technique for scanning spectrograph observations that minimizes the effects of the atmospheric dispersion while maintaining a regular scanning geometry. Such an approach could be useful for the new class of high-resolution solar spectrographs, such as SPINOR, POLIS, TRIPPEL, and ViSP
    corecore