20,095 research outputs found

    Entanglement loss in molecular quantum-dot qubits due to interaction with the environment

    Get PDF
    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunkovi\'c-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.Comment: 14 pages, 3 figure

    Cascading and Local-Field Effects in Non-Linear Optics Revisited; A Quantum-Field Picture Based on Exchange of Photons

    Full text link
    The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of NN non-interacting molecules is additive and scales as NN. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N2N^2

    Highly Efficient Modeling of Dynamic Coronal Loops

    Full text link
    Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the differential emission measure distribution, DEM(T), at the transition region footpoints; and there are options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far more sophisticated 1D hydro simulations despite using four orders of magnitude less computing time. It promises to be a powerful new tool for solar and stellar studies.Comment: 34 pages, 8 figures, accepted by Astrophysical Journal (minor revisions of original submitted version

    The limitations of speech control: perceptions of provision of speech-driven environmental controls

    Get PDF
    This study set out to collect data from assistive technology professionals about their provision of speech-driven environmental control systems. This study is part of a larger study looking at developing a new speech-driven environmental control system

    Chiral discrimination in optical binding

    Get PDF
    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed “optical binding.” Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported

    The Amazing Old Nova Q Cygni: A Far Ultraviolet Synthetic Spectral Analysis

    Full text link
    Q Cygni (Nova Cygni 1876) is the third oldest old novae (after WY Sge and V841 Oph) with a long orbital period of 10.08 hours and spectroscopic peculiarities in the optical including the presence of variable wind outflow revealed by optical P Cygni profiles in the HeI lines and H alpha beta (Kafka et al. 2003). We have carried out a synthetic spectral analysis of a far ultraviolet IUE archival spectrum of Q Cygni using our optically thick, steady state, accretion disk models and model white dwarf photospheres. We find that the accretion light of a luminous accretion disk dominates the FUV flux of the hot component with a rate of accretion 2-3 1.E-9 Msun/yr. We find that Q Cygni lies at a distance of 741 \pm 110 pc . The implications of our results for theoretical predictions for old novae are presented.Comment: PASP, August 201

    Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study

    Get PDF
    An experimental protocol using mesocosms was established to study the effect of Microcystis sp. cell abundance on microcystin production. The mesocosms (55 L) were set up in a shallow eutrophic lake and received either no (control), low (to simulate a moderate surface accumulation), or high (to simulate a dense surface scum) concentrations of Microcystis sp. cells collected from the lake water adjacent to the mesocosms. In the low- and high-cell addition mesocosms (2 replicates of each), the initial addition of Microcystis sp. cells doubled the starting cell abundance from 500 000 to 1 000 000 cells mL⁻Âč, but there was no detectable effect on microcystin quotas. Two further cell additions were made to the high-cell addition mesocosms after 60 and 120 min, increasing densities to 2 900 000 and 7 000 000 cells mL-1, respectively. Both additions resulted in marked increases in microcystin quotas from 0.1 pg cell-1 to 0.60 and 1.38 pg cell⁻Âč, respectively, over the 240 min period. Extracellular microcystins accounted for <12% of the total microcystin load throughout the whole experiment. The results of this study indicate a relationship between Microcystis cell abundance and/or mutually correlated environmental parameters and microcystin synthesis
    • 

    corecore