9 research outputs found

    Novel Dynamics Observed in a Spiking Neural Network Model of the NTS in the Rat Hind-brain

    Get PDF
    he Nucleus of the Solitary Tract (NTS) is a hind-brain structure in the rat that is the first way-station in taste processing. Its structure and function are poorly understood. Recently our group produced a model, implemented as a spiking neural network (SNN), that successfully replicated experimental data. The model\u27s topology was manually devised and the parameters were set by a genetic algorithm. In order to better understand its information processing capabilities, we probed the model with a variety of input spike patterns and observed a striking winner-take-all decision-making dynamic. We show how the topology and tuned parameters enable this decision to depend on precise spike timing events. It is curious that the experimental data upon which the model was originally evolved did not include winner-take-all examples; this was an emergent capability. It remains for additional experiments on rats to confirm or reject this model prediction

    Enhancing the architecture of interactive evolutionary design for exploring heterogeneous particle swarm dynamics: An in-class experiment

    Get PDF
    Abstract-We developed Swarm Chemistry 1.2, a new version of the Swarm Chemistry simulator with an enhanced architecture of interactive evolutionary design for exploring heterogeneous self-propelled particle swarm dynamics. In the new version, each evolutionary operator acts locally and visually to part of the population of swarms on a screen, without causing entire generation changes that were used in earlier versions. This new architecture is intended to represent cognitive actions in human thinking and decision making processes more naturally. We tested the effectiveness of the new architecture through an in-class experiment with college students participating as designers as well as evaluators of swarms. We also measured the effects of mixing and mutation operators to the performance improvement of the design processes. The students' responses showed that the designs produced using the new version received significantly higher ratings from students than those produced using the old one, and also that each of the mixing and mutation operators contributed nearly independently to the improvement of the design quality. These results demonstrate the effectiveness of the new architecture of interactive evolutionary design, as well as the importance of having diverse options of action (i.e., multiple evolutionary operators in this context) in iterative design and decision making processes. This work also presents one of the few examples of human-involved experiments on the statistical evaluation of artificial lifeforms, whose quality (such as "livingness") would be hard to assess without using human cognition at this point

    Intelligent Alarm Processing into Clinical Knowledge

    No full text
    Abstract — Alarmed physiological monitors have become a standard part of the ICU. While the alarms generated by these monitors can be important indicators of an altered physiological condition, most are unhelpful to medical staff due to a high incidence of false and clinically insignificant alarms. High numbers of false/insignificant alarms can lead to several adverse consequences such as increased patient anxiety, distraction of clinicians, and decreased efficiency in delivery of care. Furthermore, repeated false/insignificant alarms may increase the chance that healthcare providers ignore clinically significant alarms. In this paper we review the current state of intelligent alarm processing and describe an integrated systems methodology to extract clinically relevant information from physiological data. Such a method would aid significantly in the reduction of false alarms and provide nursing staff with a more reliable indicator of patient condition. I
    corecore