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Abstract— We developed Swarm Chemistry 1.2, a new ver-
sion of the Swarm Chemistry simulator with an enhanced
architecture of interactive evolutionary design for exploring
heterogeneous self-propelled particle swarm dynamics. In the
new version, each evolutionary operator acts locally and visually
to part of the population of swarms on a screen, without causing
entire generation changes that were used in earlier versions.
This new architecture is intended to represent cognitive actions
in human thinking and decision making processes more natu-
rally. We tested the effectiveness of the new architecture through
an in-class experiment with college students participating as
designers as well as evaluators of swarms. We also measured
the effects of mixing and mutation operators to the performance
improvement of the design processes. The students’ responses
showed that the designs produced using the new version
received significantly higher ratings from students than those
produced using the old one, and also that each of the mixing
and mutation operators contributed nearly independently to the
improvement of the design quality. These results demonstrate
the effectiveness of the new architecture of interactive evolu-
tionary design, as well as the importance of having diverse
options of action (i.e., multiple evolutionary operators in this
context) in iterative design and decision making processes. This
work also presents one of the few examples of human-involved
experiments on the statistical evaluation of artificial lifeforms,
whose quality (such as ‘“livingness”) would be hard to assess
without using human cognition at this point.

I. INTRODUCTION

NTERACTIVE EVOLUTIONARY COMPUTATION

(IEC) is a powerful tool that can help humans design
complex systems and solve complex problems in a huge
search space where a utility function is ill-defined and
fundamentally multi-objective [1], [2], [3]. In Artificial Life,
IEC has been actively applied to the evolutionary design
of artificial creatures and other kinds of objects, especially
those with aesthetic properties [4], [S], [6], [7], [8], [9], [10],
[11]. We also applied IEC to the design of homogeneous
[12] and heterogeneous swarms [13], [14] in the past.

We note that IEC can be not just a practical tool for
design and problem solving tasks but also a scientific tool
for representation and visualization of real human decision
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making dynamics. We proposed in [15], [16] that human
decision making may be redefined as evolution of ecologies
of ideas being discussed, where populations of potential so-
lutions evolve via continual applications of evolutionary op-
erators, and that several cognitive actions in human decision
making may be mapped to those operators, such as advocacy
(replication), criticism (removal), minor modification (point
mutation), integration (recombination), and sudden inspira-
tion (random generation). This analog implies that one could
collect detailed information about human decision making
dynamics by conducting experiments with human subjects
using appropriately configured IEC tools. We have been
working on the implementation of such experiments based
on our earlier work on interactive design of heterogeneous
swarms.

One fundamental limitation in our earlier IEC-based
swarm design system is that it used non-overlapping gen-
eration changes with a small number of selected parent
swarms. Namely, a human designer chooses a few favorable
swarms from a population and then the next generation will
be generated almost entirely from those selected swarms,
while most of the swarms that were not selected will be
discarded. This scheme, called simulated breeding [1], [6],
is often employed in IEC applications [4], [6], [13], [14]
because it helps reduce the cognitive burden on the designer
by decreasing the number of solutions the designer needs
to evaluate at a time. However, it also significantly limits
the exploratory capability of the evolutionary process, and
more importantly, such discrete generation changes of idea
populations may not necessarily capture the nature of real
human decision making. People usually keep many different
ideas in mind consciously or unconsciously at a time, and
it is more reasonable to assume that cognitive actions tend
to change those ideas more gradually and locally, instead of
completely wiping most of them out at once.

To better represent such a gradual, continuous stream of
human decision making, we have redesigned the architecture
of the Swarm Chemistry simulator. In its new version,
Swarm Chemistry 1.2, the evolutionary operators (such as
replication, mutation and mixing) act locally and visually on
the swarm(s) a designer selects, with no discrete generation
changes. Due to this change, the population of swarms on
a screen is expected to be more natural and accurate as
a representation of the state of design possibilities in the
designer’s mind. We hypothesized that this enhanced new
architecture would improve the performance of the IEC-



based swarm design processes. To test this hypothesis, we
designed and conducted an in-class experiment with college
students participating as designers as well as evaluators of
swarms. This paper presents a first report of this experiment,
whose results seemed to indicate that the enhanced architec-
ture indeed had a significant impact on the quality of final
products.

The rest of the paper is structured as follows. In the next
section, the technical details of the Swarm Chemistry simu-
lator will be explained with a particular focus on what kind
of changes have been implemented to the new version 1.2.
Then the objective and procedure of the in-class experiment
will be explained in Section III. The experimental results and
statistical analyses on them will be presented in Section IV,
followed by discussions and conclusions in Section V.

II. SWARM CHEMISTRY 1.2

Swarm Chemistry [13], [14] is a novel artificial chemistry
[17] framework that uses artificial swarm populations as
chemical reactants and designs spatio-temporal patterns of
heterogeneous swarms using IEC. In Swarm Chemistry, it
is assumed that self-propelled particles move in a two-
dimensional infinite continuous space. Each particle can
perceive only the local center of mass and the average
velocity vector of other particles within its local perception
range, and change its velocity in discrete time steps according
to kinetic rules similar to those of Reynold’s Boids [18].
Each particle is assigned with its own kinetic parameter
settings that specify preferred speed, local perception range,
and strength of each kinetic rule. Particles that share the
same set of kinetic parameter settings are considered of the
same type. For more details of the model and the simulation
algorithm used, see [13], [14].

The Swarm Chemistry simulator was implemented as
a Java applet/application and is available online from the
author’s website!. Using the simulator, one can interactively
investigate what kind of dynamic patterns or motions may
emerge out of the mixtures of multiple types of particles.
Computational exploration has shown that heterogeneous
particle swarms usually undergo spontaneous mutual segre-
gation, often leading to the formation of multilayer structures,
and that the aggregates of particles may additionally show
more dynamic macroscopic behaviors, including linear mo-
tion, oscillation, rotation, chaotic motion, and even complex
mechanical or biological-looking structures and behaviors.
Specifications of those patterns were indirectly and implicitly
woven into a list of different kinetic parameter settings
and their proportions, called recipe, which would be hard
to obtain through conventional design methods but can be
obtained heuristically through IEC methods.

The earlier versions of the Swarm Chemistry simulator
(1.0 [13], 1.1 [14]) used discrete, non-overlapping generation
changes (Fig. 1), where a user selects only one or two
favorable swarms and the next generation will be generated
out of them, discarding all other unused swarms. In addition,
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Fig. 1. Selection operations and consequent generation changes in the
old version of the Swarm Chemistry simulator (version 1.0/1.1; figure taken
from [14]). A next generation is produced using only a few swarms selected
by a user, while unselected ones are discarded.

those old versions used a fixed number of swarms in each
generation (though it was changeable manually in version
1.1). Moreover, the mutation operator became available only
in version 1.1 (which was optional by default), and all the
design results reported so far in [13], [14] were produced
using the mixing operator only.

To address the problems mentioned above, we developed
a new version of the Swarm Chemistry simulator, version
1.2. While the simulation algorithm of a swarm’s kinetic
dynamics remains exactly the same as that of earlier versions,
the algorithm and the user interface of IEC underwent a
major redesign. Figure 2(a) shows a screenshot of the new
simulator, where multiple swarms are displayed in separate
frames placed at random positions on a screen and simu-
lated simultaneously. Each frame has a set of evolutionary
operators in its option menu (Fig. 3). In version 1.2, the
number of swarms is unlimited and changes dynamically
in the course of interactive design. Positions and sizes of
the frames are automatically adjusted using simple pseudo-
kinetic rules, though they can be changed manually too.

Version 1.2 uses continuous generation changes, i.e., each
evolutionary operator is applied only to part of the population
of swarms on a screen without causing discrete generation
changes (Fig. 2(b)—(e)). A randomly generated swarm can be
added by clicking on the “Add a random swarm” button in the
control panel located at the top (Fig. 2(b)). A mutated copy
of an existing swarm can be generated by either selecting the
“Mutate” option or double-clicking on a frame (Fig. 2(c)).
Mixing two existing swarms can be done by either selecting
the “Mix” option or single-clicking on two frames, where
the new mixture is placed physically in the middle of the
two selected swarms’ frames (Fig. 2(d)). The “Replicate”
option creates an exact copy of the selected swarm next to it
(Fig. 2(e)). The “Edit” option opens a recipe window of the
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Fig. 2. A demonstration of how the new Swarm Chemistry simulator (version 1.2) works. (a) A screenshot. Multiple swarms are displayed at random
positions on a screen and simulated simultaneously. Positions and sizes of the frames are adjusted automatically using simple pseudo-kinetic rules. The
long rectangular frame at the top is the control panel. (b) Random generation. Clicking on the “Add a random swarm” button in the control panel adds a
new, randomly generated swarm at a random position on the screen. (c) Mutation. Selecting the “Mutate” option or double-clicking on a frame creates a
mutated copy of the selected swarm next to it. (d) Mixing. Selecting the “Mix” option or single-clicking on two frames creates a mixture of the selected
two swarms between them. (e) Replication. Selecting the “Replicate” option on a frame creates an exact copy of the selected swarm next to it.
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Fig. 3. An option menu available on each frame in the new version of the
simulator (version 1.2).
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Fig. 4. A recipe window that opens when the “Edit” option is selected.

selected frame (Fig. 4), where the user can see and edit the
kinetic parameter sets of the swarm directly. Finally, one can
remove a frame from the population by selecting the “Kill”
option or simply closing the frame (example not shown in
figures).

IIT1. EXPERIMENT

To evaluate the new version of the Swarm Chemistry
simulator, we conducted an in-class experiment in which
college students participated as designers and then evaluators
of swarms. The objective of this experiment was twofold:
to examine if the new architecture of Swarm Chemistry
1.2 was more effective than that of the old versions, and
to quantitatively evaluate how each of the evolutionary
operators improved the overall “quality” of outcomes of
evolutionary design. We specifically focused on mixing and
mutation operators in this evaluation. The quality of swarms
was measured by students’ subjective peer evaluation.

The experiment was done as part of the activities in the
“Evolutionary Product Design” module of an Engineering
elective course “Exploring Social Dynamics”, which was de-
veloped with financial support from NSF (Award # 0737313)
and offered to senior and junior Bioengineering and Man-
agement majors at Binghamton University in Fall 2008. The
participating students’ backgrounds were: 9 female, 12 male;
13 senior, 8 junior; 18 Bioengineering major, 3 Management
major. This experiment was reviewed and approved by the
Binghamton University IRB.

The procedure of the experiment was as follows.

1) 21 students were randomly divided into seven groups,
each made of three members. Every time groups were
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2)

3)

4)

5)

6)

formed, we confirmed that each group had at least one
member who had a Java-enabled laptop computer with
wireless network connection.

They were instructed to launch the old version of the
Swarm Chemistry simulator (version 1.1) from the
author’s website, received a brief explanation of how
to use the simulator, and then asked to work together
as a team to design an “interesting” swarming pattern
within ten minutes. After that, each group was re-
minded to make a final decision within an extra minute
and choose the best swarm design as the group’s final
product. Then they were told to open its recipe window
and copy and paste its recipe text to an online bulletin
board. This step is called “condition 0" hereafter.
Then, the new version of the simulator was introduced
with a brief explanation of how to use it and how it
differs from the old version, and the following four
conditions were disclosed to the students:

1: Baseline (neither mixing nor mutation operators
available)

2: Mixing only

3: Mutation only

4: Mixing + mutation (full-featured new simulator)

Correspondingly, four variations of the new simulator
were prepared and uploaded to the website, each of
which was configured with these two evolutionary
operators enabled or disabled according to the experi-
mental condition associated with it.

Students were randomly reshuffled into new seven
groups. Each group was randomly assigned to one
of the above four conditions and told to launch the
simulator that corresponds to the assigned condition.
Then they were told again to collaboratively design
a nice swarming pattern within ten minutes (Fig. 5)
and post their final product to the online bulletin board
within an extra minute.

The above step was repeated three times, making the
total number of final products (1+3) x 7 = 28. Every
time, the students were randomly regrouped so as to
minimize potential effects of confounding factors. The
total number of produced swarms are: condition 0: 7,
condition 1: 5, condition 2: 5, condition 3: 5, condition
4: 6.

Finally, all the 28 swarms generated from the 28
submitted recipes were simulated simultaneously and
projected to a large screen in the classroom (Fig. 6).
The order of the swarms was randomized on the screen
(except for those of condition O that were arranged on
the top row for technical reasons). Then each student
was told to evaluate how “cool” each swarm was on
a 0-to-10 numerical scale (10 being the best) using a
web-based rating system. For those who did not have
a laptop, PDAs with wireless network connection were
handed out as needed. As a result, each swarm received
21 individual rating scores.



Fig. 5. Students working on collaborative swarm design tasks during the
in-class experiment.

Fig. 6. 28 swarms simultaneously simulated and projected on a large screen
in the classroom for students’ peer evaluation.

IV. RESULTS

Students’ evaluation results were first normalized so that
the mean was O and the standard deviation 1 for each
individual student’s responses, in order to equalize the con-
tribution of each student’s ratings to the overall statistics.
Then the normalized scores were collected and averaged for
each of the five (0—4) experimental conditions. The result
is shown in Fig. 7. There appears to be a difference in the
mean normalized scores between the old and new versions
(conditions 0 and 4), and the scores are higher when more
evolutionary operators are available. Figure 8 shows several
final swarm designs produced through the experiment (three
with the highest scores and three with the lowest scores),
which indicate that highly evaluated swarms tend to maintain
coherent, clear structures and motions without dispersal,
while those that received lower ratings tend to disperse so
that their behaviors are not quite appealing to students.
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Fig. 7. Comparison of normalized score distributions between swarms
produced under five experimental conditions. Mean normalized scores
are shown by diamonds, with error bars around them showing standard

deviations.
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Fig. 8. Samples of the final swarm designs created by students. (a) The
best three that received the highest rating scores. They were produced under
condition 3, 4 and 4 (from left to right), respectively. (b) The worst three
that received the lowest rating scores. They were produced under condition
0, 0 and 2 (from left to right), respectively.

To detect statistical differences between experimental con-
ditions, the one-tailed Welch’s ¢-test was conducted on each
pair of the conditions. In this and all the following statistical
tests, the significance level a = 0.05 was used. The result of
the ¢-test is summarized in Table I. A statistically significant
difference was found between conditions 0 and 2-4, 1 and
3—-4, and 2 and 4. In particular, a highly significant difference
was detected between conditions O and 4 (p < 0.0005),
which strongly supports our hypothesis that the newly devel-
oped architecture of Swarm Chemistry 1.2 is more effective
in designing swarms than that of the old version.

In addition, the contribution of each evolutionary operator
(mixing and mutation) was evaluated using 2 x 2 ANOVA
applied to the data for conditions 1-4. The result is sum-



TABLE 1
RESULTS OF ONE-TAILED WELCH’S t-TEST ON EACH PAIR OF THE FIVE

CONDITIONS.
Condition X  Condition Y  p-value
0: Old 1: Baseline 0.438
2: Mixing 0.035
3: Mutation 0.024
4: Both <0.0005
1: Baseline 2: Mixing 0.068
3: Mutation 0.046
4: Both 0.001
2: Mixing 3: Mutation ~ 0.370
4: Both 0.035
3: Mutation 4: Both 0.099
TABLE I

RESULTS OF 2 X 2 ANOVA ON THE DATA FOR CONDITIONS 1-4.

Source of  Degrees of Sum of  Mean F p
variation freedom squares  square

Mixing 1 3.671 3.671  4.443  0.036
Mutation 1 5.025 5.025 6.082 0.014

Error 438 361.9 0.826

Total 440 370.6

marized in Table II. A significant main effect was found
for either of the two operators, mixing (p = 0.036) and
mutation (p = 0.014). No significant interaction was noticed
between these operators (Fig. 9). These results show that
either operator significantly and independently contributed
to the improvement of the quality of final products.

V. DISCUSSIONS

The experimental results shown above suggest that the
revision of the architecture of interactive evolutionary design
actually worked out well in improving the quality of the
design outcomes as we originally intended. Our results also
suggest that each of the mixing and mutation operators
contributed nearly independently to the improvement of the
design quality. This finding qualitatively agrees with our
earlier work on computer simulation of collaborative decision
making [16], where we discussed a possible relationship

Score
Mutation on
0.2
0.1f
__m  Mutation off
0.0 7
—0.1] _—
-
—0.2
Mixing off Mixing on
Fig. 9. Mean normalized scores plotted with regard to two sources of

variation (mixing on/off and mutation on/off). Nearly parallel lines show
that there is very little statistical interaction between the two operators.
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between the performance of collective decision making and
the behavioral patterns of participants in a group: the more
diverse options of action they have in discussion, the better
their collective decision making could be. In the experiment
presented here, the availability of multiple evolutionary op-
erators opens up new pathways to potentially better designs,
improving the quality of final products on average.

Moreover, from the viewpoint of Artificial Life research,
this work presents one of the few, unique examples of ex-
perimental studies involving human subjects on the statistical
evaluation of artificial lifeforms. One of the main objectives
of Artificial Life remains to define the “livingness” and other
life-specific qualities of systems, which are hopelessly ill-
defined concepts that are hard to assess without involving
human cognition (at least at this point), and hence we believe
that more human-involved experimental assessments of the
qualities of “life-as-it-could-be” should be carried out in the
field of Artificial Life. We hope that our work presented
in this paper constitutes an illustrative example of such
evaluation efforts.

We are aware of several limitations in the design of
this experiment. As it was the very first experiment we
conducted, we could not fully exclude several confounding
factors due to technical reasons, which may have affected the
results. Firstly, we had the students use their own laptops to
participate in the experiment, so the difference in available
computational power among them might have influenced
the performance of interactive design. Secondly, since the
condition O (the old version) was tested prior to the other four
conditions, the students’ learning over time may have nega-
tively affected the scores for condition 0 (although this might
well be cancelled by the effect of fatigue increasing over
time). Thirdly, in all of the five conditions, the “Edit” option
was not disabled, so there is small probability for some
students to directly edit recipes of swarms to “intelligently”
produce good designs. We tried to minimize the effects of
those confounding factors by randomizing the groups before
every session.

Other limitations in our experimental design include the
fact that the effects of other operators (replication, removal,
random generation) were not examined, and also that the mu-
tation operator was actually a combination of several distinct
mutation mechanisms (duplication, insertion and deletion of
a parameter set within a recipe, and point mutation applied
to specific parameter values) but their individual effects
were not assessed separately either. However, increasing the
number of experimental variables is one of the most difficult
things to achieve in human-involved experiments like ours,
because the time and efforts a human subject can spend in
an experiment is generally limited.

Finally, we note that the proposed interactive evolutionary
method works only for problems whose design criteria are
easily visualized in small frames on the screen. It remains an
open question whether the similar approach could be adapted
to other design criteria that are not so easily visualized.

Despite those potential confounding factors and limita-



tions, our experiment produced a reasonable result about
the effects of the architecture (algorithm and user interface)
and the availability of multiple evolutionary operators on the
quality of IEC-based design and decision making. For future
work, we plan to conduct an extended version of this exper-
iment in which all the events during interactive evolutionary
design will be recorded electronically so that more detailed
information about the dynamics of human decision making
and the effects of each individual evolutionary operator can
be extracted from those data. It will be promising to do
such experiments online so that an order-of-magnitude larger
number of human subjects will be able to participate in the
study, which will bear significant potential of applications
as suggested in [9]. In addition, we also plan to conduct
a more detailed analysis of the quantitative spatio-temporal
properties of the “interesting” swarms evolved by students.
Such analysis may provide insight into what “livingness”
means to people.
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