130 research outputs found
Spectral isolation of naturally reductive metrics on simple Lie groups
We show that within the class of left-invariant naturally reductive metrics
on a compact simple Lie group , every
metric is spectrally isolated. We also observe that any collection of
isospectral compact symmetric spaces is finite; this follows from a somewhat
stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result
demonstrating that any collection of isospectral compact symmetric spaces
must be finite, to appear Math Z. (published online Dec. 2009
Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1)
BackgroundApremilast works intracellularly to regulate inflammatory mediators.ObjectiveESTEEM 1 evaluated efficacy/safety of apremilast at 30 mg twice a day for moderate to severe plaque psoriasis.MethodsThis phase III, multicenter, double-blind, placebo-controlled study randomized adults (2:1) to apremilast or placebo. At week 16, the placebo group switched to apremilast through week 32, followed by a randomized treatment withdrawal phase to week 52. Binary end points were analyzed using χ2 test; continuous end points used analysis of covariance.ResultsIn all, 844 patients were randomized (n = 282, placebo; n = 562, apremilast). At week 16, significantly more patients taking apremilast achieved 75% or greater reduction from baseline Psoriasis Area and Severity Index score (PASI-75) (33.1%) versus placebo (5.3%, P < .0001; primary end point). Most (61.0%) patients rerandomized to apremilast at week 32 achieved PASI-75 at week 52 versus 11.7% rerandomized to placebo. Of patients rerandomized to apremilast at week 32, mean percentage change from baseline PASI score was −88% to −81% (weeks 32-52). During the placebo-controlled period, 55.7% and 69.3% of patients randomized to placebo and apremilast, respectively, had 1 or more adverse events. Most adverse events were mild/moderate in severity. No new significant adverse events emerged with continued apremilast exposure versus the placebo-controlled period.LimitationsData were limited to 52 weeks and may not generalize to nonplaque psoriasis.ConclusionsApremilast was effective in moderate to severe plaque psoriasis
NuSTAR J033202-2746.8: Direct Constraints on the Compton Reflection in a Heavily Obscured Quasar at z ≈ 2
We report Nuclear Spectroscopic Telescope Array (NuSTAR) observations of NuSTAR J033202-2746.8, a heavily obscured, radio-loud quasar detected in the Extended Chandra Deep Field-South, the deepest layer of the NuSTAR extragalactic survey (~400 ks, at its deepest). NuSTAR J033202-2746.8 is reliably detected by NuSTAR only at E > 8 keV and has a very flat spectral slope in the NuSTAR energy band (; 3-30 keV). Combining the NuSTAR data with extremely deep observations by Chandra and XMM-Newton (4 Ms and 3 Ms, respectively), we constrain the broad-band X-ray spectrum of NuSTAR J033202-2746.8, indicating that this source is a heavily obscured quasar ( cm–2) with luminosity L 10-40 keV ≈ 6.4 × 1044 erg s–1. Although existing optical and near-infrared (near-IR) data, as well as follow-up spectroscopy with the Keck and VLT telescopes, failed to provide a secure redshift identification for NuSTAR J033202-2746.8, we reliably constrain the redshift z = 2.00 ± 0.04 from the X-ray spectral features (primarily from the iron K edge). The NuSTAR spectrum shows a significant reflection component (), which was not constrained by previous analyses of Chandra and XMM-Newton data alone. The measured reflection fraction is higher than the R ~ 0 typically observed in bright radio-loud quasars such as NuSTAR J033202-2746.8, which has L 1.4 GHz ≈ 1027 W Hz–1. Constraining the spectral shape of active galactic nuclei (AGNs), including bright quasars, is very important for understanding the AGN population, and can have a strong impact on the modeling of the X-ray background. Our results show the importance of NuSTAR in investigating the broad-band spectral properties of quasars out to high redshift
NuSTAR unveils a Compton-thick type 2 quasar in MrK 34
We present Nuclear Spectroscopic Telescope Array (NuSTAR) 3-40 keV observations of the optically selected Type 2 quasar (QSO2) SDSS J1034+6001 or Mrk 34. The high-quality hard X-ray spectrum and archival XMM-Newton data can be fitted self-consistently with a reflection-dominated continuum and a strong Fe K? fluorescence line with equivalent width >1 keV. Prior X-ray spectral fitting below 10 keV showed the source to be consistent with being obscured by Compton-thin column densities of gas along the line of sight, despite evidence for much higher columns from multiwavelength data. NuSTAR now enables a direct measurement of this column and shows that N H lies in the Compton-thick (CT) regime. The new data also show a high intrinsic 2-10 keV luminosity of L 2-10 ~ 1044 erg s–1, in contrast to previous low-energy X-ray measurements where L 2-10 lesssim 1043 erg s–1 (i.e., X-ray selection below 10 keV does not pick up this source as an intrinsically luminous obscured quasar). Both the obscuring column and the intrinsic power are about an order of magnitude (or more) larger than inferred from pre-NuSTAR X-ray spectral fitting. Mrk 34 is thus a "gold standard" CT QSO2 and is the nearest non-merging system in this class, in contrast to the other local CT quasar NGC 6240, which is currently undergoing a major merger coupled with strong star formation. For typical X-ray bolometric correction factors, the accretion luminosity of Mrk 34 is high enough to potentially power the total infrared luminosity. X-ray spectral fitting also shows that thermal emission related to star formation is unlikely to drive the observed bright soft component below ~3 keV, favoring photoionization instead
The NuSTAR Extragalactic Survey: A First Sensitive Look at the High-energy Cosmic X-Ray Background Population
We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at gsim 10 keV. We find that these NuSTAR-detected sources are ≈100 times fainter than those previously detected at gsim 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L 10-40 keV ≈ 4 × 1041-5 × 1045 erg s–1); the median redshift and luminosity are z ≈ 0.7 and L 10-40 keV ≈ 3 × 1044 erg s–1, respectively. We characterize these sources on the basis of broad-band ≈0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L 10-40 keV > 1044 erg s–1, of which ≈50% are obscured with N H gsim 1022 cm–2. However, none of the 10 NuSTAR sources are Compton thick (N H gsim 1024 cm–2) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L 10-40 keV > 1044 erg s–1) selected at gsim 10 keV of lsim 33% over the redshift range z = 0.5-1.1. We jointly fitted the rest-frame ≈10-40 keV data for all of the non-beamed sources with L 10-40 keV > 1043 erg s–1 to constrain the average strength of reflection; we find R < 1.4 for Γ = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at gsim 10 keV. We also constrain the host-galaxy masses and find a median stellar mass of ≈1011 M ☉, a factor ≈5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass
The age and hydrological history of Blue Lake, South Australia
Three sediment cores from the Blue Lake, a groundwater fed lake of volcanic origin in South Australia, have been investigated using a range of chemical and isotopic parameters. The C-14 activity of both the inorganic and organic carbon fractions of the sediment decreases monotonically with depth. The rate of change with depth is greater for near-surface samples with an apparent hiatus in sedimentation rate at about 7000 yr B.P. Estimates of age for the precipitated authigenic carbonate, after correction for dilution with dead carbon from the groundwater, agree well with calculated ages from the organic carbon fraction of the sediment. We suggest the lake is much older than previously proposed using other dating techniques. Variations in the delta(13)C and delta(18)O composition of the authigenic carbonate reflect different residence times of dissolved inorganic carbon and water in the lake caused by changes in the lake level. During periods of hydrologic steady-state, it is suggested that relative changes in the temperature of the lake can be seen in delta(18)O changes in authigenic carbonate. Blue Lake has been undergoing sedimentation for at least 28,000 years, including two lengthy periods of hydrologic steady state. The lake, for a large proportion of its existence, was much shallower while for the last 7000 years has maintained a level close to the present one. The influence of pumping from the lake for urban water supply during this century is reflected in the isotopic composition of carbonate in the sediment
- …