11,568 research outputs found

    Social Norms: Do We Love Norms Too Much?

    Get PDF
    Social norms are often cited as the cause of many social phenomena, especially as an explanation for prosocial family and relationship behaviors. And yet maybe we love the idea of social norms too much, as suggested by our failure to subject them to rigorous test. Compared to the detail in social norms theoretical orientations, there is very little detail in tests of normative theories. To provide guidance to researchers who invoke social norms as explanations, we catalog normative orientations that have been proposed to account for consistent patterns of action. We call on researchers to conduct tests of normative theories and the processes such theories assert

    Trajectory Design Leveraging Low-Thrust, Multi-Body Equilibria and Their Manifolds

    Get PDF
    A key challenge in low-thrust trajectory design is generating preliminary solutions that simultaneously specify the spacecraft position and velocity vectors, as well as the thrust history. To mitigate this difficulty, dynamical structures within a combined low-thrust circular restricted 3-body problem (CR3BP) are investigated as candidate solutions to seed initial low-thrust trajectory designs. The addition of low-thrust to the CR3BP modifies the locations and stability of the equilibria, offering novel geometries for mission applications. Transfers between these novel equilibria are constructed by leveraging the associated stable and unstable manifolds and insights from the low-thrust CR3BP

    Dead-time effects on the voltage spectrum of a PWM inverter

    Get PDF
    An inverter converts a direct-current power supply to an alternating-current power supply. This con- version is achieved by switching the output between the inputs at high frequency. The resulting output voltage may be described by a high-frequency train of variable-width pulses. Pulse widths are slowly modulated so that this output waveform contains a prescribed low-frequency component, which may then be isolated by an appropriate filtering regime. Techniques for determining the full harmonic spec- trum of input and output voltages and currents are well established, at least for an idealised mathematical model of the inverter. However, this model assumes that changes of inverter configuration can be ef- fected instantaneously, which is not quite the case in practice. In fact, a small amount of dead time must be incorporated into switching regimes in order to avoid short circuits of the input. Although dead time is an important feature of real power conversion devices, its effects on output voltage spectra have not previously been fully determined (except by imposing rather restrictive approximations). This situation is remedied in the present paper, in which we present closed-form expressions for the coefficients of the harmonic spectrum, corroborated by simulations

    Dust Explosions and Collapsed Ductwork

    Get PDF
    PresentationOne of the more obvious consequences of a dust deflagration inside process equipment or a structure is the mechanical damage caused by shock (compression) waves. This overpressure damage is revealed through the displacement of equipment, the outward deformation or rupture of enclosures constructed of ductile materials, or the projection of missiles. However, a different type of damage is sometimes observed in the ductwork connecting process equipment. In particular, the ductwork is collapsed as if it were subjected to an external, rather than an internal pressure. The phenomenon that causes this collapse of thin-walled conduit is a gas dynamic process called an expansion wave. When a dust deflagration travels through a conduit, it accelerates and causing a rise in pressure. When the dust deflagration is vented (say through a deflagration vent), the discharge of the high pressure combustion products causes the formation of an expansion wave that travels in the reverse direction from the vent backwards. The expansion wave causes the pressure in the ductwork to fall below atmospheric pressure. The sub-atmospheric pressure, in turn, causes the ductwork to fail by buckling. In this study, we examine the gas dynamics of the expansion wave, demonstrate how to calculate the degree of pressure drop caused by the expansion wave, and illustrate the concept with case studies of dust explosions

    Trajectory Design for a Cislunar Cubesat Leveraging Dynamical Systems Techniques: The Lunar Icecube Mission

    Get PDF
    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, will be deployed from the upcoming Exploration Mission-1 vehicle in late 2018. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design

    The Lunar IceCube Mission Design: Construction of Feasible Transfer Trajectories with a Constrained Departure

    Get PDF
    Lunar IceCube, a 6U CubeSat, will prospect for water and other volatiles from a low-periapsis, highly inclined elliptical lunar orbit. Injected from Exploration Mission-1, a lunar gravity assisted multi-body transfer trajectory will capture into a lunar science orbit. The constrained departure asymptote and value of trans-lunar energy limit transfer trajectory types that re-encounter the Moon with the necessary energy and flight duration. Purdue University and Goddard Space Flight Center's Adaptive Trajectory Design tool and dynamical system research is applied to uncover cislunar spatial regions permitting viable transfer arcs. Numerically integrated transfer designs applying low-thrust and a design framework are described
    • …
    corecore