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TRAJECTORY DESIGN LEVERAGING LOW-THRUST,
MULTI-BODY EQUILIBRIA AND THEIR MANIFOLDS

Andrew D. Cox∗, Kathleen C. Howell† and David C. Folta‡

A key challenge in low-thrust trajectory design is generating preliminary solutions
that simultaneously specify the spacecraft position and velocity vectors, as well as
the thrust history. To mitigate this difficulty, dynamical structures within a com-
bined low-thrust circular restricted 3-body problem (CR3BP) are investigated as
candidate solutions to seed initial low-thrust trajectory designs. The addition of
low-thrust to the CR3BP modifies the locations and stability of the equilibria, of-
fering novel geometries for mission applications. Transfers between these novel
equilibria are constructed by leveraging the associated stable and unstable mani-
folds and insights from the low-thrust CR3BP.

INTRODUCTION

A key challenge in low-thrust trajectory design is generating preliminary solutions that simulta-
neously deliver spacecraft position and velocity vectors through time, as well as the thrust history.
Although many strategies have emerged to construct spacecraft position and velocity histories in
dynamical models such as the circular restricted 3-body problem (CR3BP), fewer methodologies
are available to identify a preliminary thrust history. Those methods that do exist often rely on
optimization algorithms to solve boundary value or initial value problems that include the control
variables. For example, predictor-corrector shooting algorithms have been applied to generate con-
trol histories along low-thrust transfers between periodic orbits in the CR3BP.1,2 Other authors have
applied low-thrust to natural arcs via optimization processes or machine learning to identify attain-
able regions.3,4 Similarly, collocation and direct transcription, combined with indirect optimization,
are leveraged to construct non-intuitive orbit geometries by leveraging a low-thrust acceleration.5,6

Rather than rely solely on numerical methods and optimization algorithms to develop a low-
thrust control history, dynamical systems techniques are applied to a combined low-thrust, CR3BP
(CR3BP-LT) model to gain insights to be applied for the construction of preliminary solutions that
include low-thrust arcs. Guidance from the CR3BP is already available for ballistic trajectories;
dynamical structures such as equilibrium solutions, forbidden regions, periodic orbits, and invariant
manifolds describe flow throughout the system.7 These structures are leveraged in numerous mis-
sion scenarios and are valuable guides for trajectory design.8,9,10,11 Similar structures and insights
are available from the CR3BP-LT to supply a larger array of design options than are currently avail-
able for low-thrust trajectory design.12 Subsequently, optimal low-thrust paths that depend strongly
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on the initial design input to an optimization or other numerical algorithm may be tailored more
specifically to a particular mission scenario.

Two key properties of the CR3BP-LT are leveraged to inform low-thrust trajectory design in
this analysis. First, by employing a set of simplifying assumptions, the CR3BP-LT is reduced to a
conservative, Hamiltonian system. The natural energy (i.e., the Jacobi constant) varies when low-
thrust is included, but evolves independently of the spacecraft path and is described by a plane
in x-y-energy space. This geometric result supplies intuition to facilitate the otherwise difficult
selection of thrust parameters for an initial design. Second, the equilibrium solutions in the planar
CR3BP-LT occur in unique configurations with manifolds that guide global flow in novel ways.
The number and locations of the low-thrust equilibria vary with the magnitude and orientation of
the low-thrust acceleration vector, including equilibrium point configurations not available in the
natural model.12,13,14 Additionally, the stability properties of the low-thrust equilibria vary with
position and differ from the natural CR3BP equilibria, supplying stable and unstable manifolds that
describe new flow patterns through the system. By leveraging these manifolds, low-thrust transfers
between the natural Lagrange points (and the nearby oscillatory motion) are constructed.13 This
strategy, introduced by Farrés for Sun-Earth solar sail applications, is extended to the Earth-Moon
system and additional insights from the CR3BP-LT are employed to guide the design.

DYNAMICAL MODEL DEVELOPMENT

The first step in computing and leveraging dynamical structures within the CR3BP-LT is the
development of the dynamical model. An energy-based approach is first employed to derive the
governing equations in the CR3BP and obtain an expression for the natural Hamiltonian. By aug-
menting the CR3BP equations of motion (EOMs) with a low-thrust term, the CR3BP-LT is con-
structed and the associated low-thrust Hamiltonian is defined. This low-thrust Hamiltonian serves
as an integral of the motion when the low-thrust acceleration vector is fixed in the rotating frame,
and, thus, may be leveraged to characterize motion in the CR3BP-LT.

Circular Restricted 3-Body Problem

The CR3BP describes the motion of a relatively small body, such as a spacecraft, in the presence
of two larger gravitational point masses (P1 and P2) with paths that evolve along circular orbits
about their mutual barycenter (B). To simplify the governing equations and enable straightforward
visualization of periodic solutions, the motion of the spacecraft is described in a right-handed frame
(x̂, ŷ, ẑ) that rotates with the two primaries, as seen in Figure 1, where x̂, ŷ, and ẑ are vectors of
unit length. The system is parameterized by the mass ratio, µ = M2/(M1+M2), whereM1 andM2

are the masses of the primaries and M1 ≥ M2. To facilitate numerical integration, the dimensional
values are nondimensionalized by characteristic quantities such that the distance between P1 and
P2 is unity, the mean motion of the two primaries is unity, and the masses of each body range from
zero to one half.15 The spacecraft is located relative to the system barycenter in the rotating frame
via the vector ~r = {x y z}T .

The equations of motion governing the CR3BP are derived via a Hamiltonian energy approach.
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Figure 1. CR3BP system configuration; two point masses, P1 and P2, proceed on
circular orbits about their mutual barycenter, B. The behavior of a third, relatively
massless particle is described within the rotating coordinate frame, (x̂, ŷ, ẑ)

Let the kinetic (T ) and potential (V ) energies corresponding to the CR3BP system be defined by

T =
1

2

[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
, (1)

V =
−(1− µ)

r13
− µ

r23
, (2)

where ẋ, ẏ, and ż are the derivatives of the position states with respect to nondimensional time as
observed in the rotating frame, and r13 and r23 are the distances between the spacecraft (P3) and
the first and second primaries, respectively:

r13 =
√

(x+ µ)2 + y2 + z2 , r23 =
√

(x− 1 + µ)2 + y2 + z2 .

Next, form the Hamiltonian,

Hnat =
1

2
v2 − 1

2

(
x2 + y2

)
− 1− µ

r13
− µ

r23
, (3)

where the squared velocity magnitude is v2 = ẋ2 + ẏ2 + ż2. By applying Hamilton’s canonical
equations of motion, a set of differential equations that govern the motion of P3 emerges,

ẍ = 2ẏ + Ωx, (4)

ÿ = −2ẋ+ Ωy, (5)

z̈ = Ωz, (6)

where Ω is the CR3BP pseudo-potential function,

Ω =
1

2
(x2 + y2) +

1− µ
r13

+
µ

r23
, (7)

and Ωx, Ωy, and Ωz represent the partial derivative of Ω with respect to the subscripted variables x,
y, and z, respectively. Because the CR3BP is autonomous and conservative, Hnat is constant and
equivalent to the Jacobi integral, i.e., the Jacobi constant. The Jacobi constant, C = −2Hnat, is
commonly leveraged as a measure of the energy associated with arcs in the CR3BP.
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CR3BP Incorporating Low-Thrust

To incorporate low-thrust into the CR3BP multi-body model, the low-thrust acceleration vector
is first defined. This vector,

~alt =
f

m
û , (8)

is oriented relative to the rotating frame via the unit vector û and scaled by the nondimensional
thrust magnitude, f , and nondimensional spacecraft mass, m = M3/M3,0, where M3 is the instan-
taneous spacecraft mass and M3,0 is the initial (wet) spacecraft mass. The nondimensionalization
of the thrust magnitude leverages the CR3BP characteristic time, t∗, and characteristic length, l∗,
for consistency with the CR3BP coordinate nondimensionalization, i.e.,

f =
Ft2∗
l∗M3,0

. (9)

In this expression, F describes the thrust magnitude in kilonewtons, l∗ represents the distance be-
tween P1 and P2 in kilometers, t∗ is the inverted system mean motion, t∗ = 1/n, in seconds, and
M3,0 is defined in terms of kilograms. A nondimensional thrust magnitude of f ≈ 10−2 in the
Earth-Moon and Sun-Earth CR3BP-LT systems is consistent with current spacecraft capabilities,
such as Deep Space 1, Dawn, or Hayabusa.12 Accordingly, a low-thrust acceleration magnitude of
alt = f/m = 7e-2 is frequently leveraged in this document to represent a reasonable low-thrust
capability in the Earth-Moon system.

To apply an energy-based derivation of the CR3BP-LT EOMs similar to the derivation leveraged
for the CR3BP, the CR3BP dynamics are augmented with a low-thrust acceleration term. While
the spacecraft kinetic energy expression in Equation (1) remains unchanged, the potential energy
expression incorporates a low-thrust acceleration term, i.e.,

Vlt =
−(1− µ)

r13
− µ

r23
− ~r • ~alt . (10)

This additional term propagates through the derivation to yield the low-thrust Hamiltonian,

Hlt =
1

2
v2 − 1

2

(
x2 + y2

)
− 1− µ

r13
− µ

r23
− ~r • ~alt , (11)

which may also be written in terms of the natural Hamiltonian, i.e.,

Hlt = Hnat − ~r • ~alt . (12)

Due to the time-varying nature of the spacecraft mass, the governing equations are not available
directly from Hamilton’s canonical equations. However, Newton’s law is straightforwardly applied
to yield the EOMs,

ẍ = 2ẏ + Ωx + altux, (13)

ÿ = −2ẋ+ Ωy + altuy, (14)

z̈ = Ωz + altuz, (15)

ṁ =
−fl∗
Ispg0t∗

, (16)

where alt is the magnitude of the low-thrust acceleration vector, ux, uy, and uz are the individual
components of û along each of the rotating axes, Isp is the specific impulse associated with the
propulsion system, and g0 = 9.80665e-3 km/s2. These equations are consistent with those that
govern the natural CR3BP and are simply augmented with the low-thrust acceleration terms.
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CR3BP-LT Simplifications for Global Insight

To facilitate analyses in the CR3BP-LT, simplifications are applied to reduce the number of di-
mensions. The conservative, natural problem admits an integral of the motion (the Hamiltonian,
Hnat), reducing the natural problem dimension by one. However, due to the non-autonomous na-
ture of the CR3BP-LT, the low-thrust Hamiltonian is not constant in general and, thus, does not
necessarily offer a similar dimension reduction in the low-thrust problem. Nevertheless, an analysis
of the time derivative of the low-thrust Hamiltonian supplies useful insights. First, differentiate the
first term in Equation (12), i.e., the expression for the natural Hamiltonian,

∂Hnat

∂τ
= ẋ (ẍ− Ωx) + ẏ

(
ÿ − Ωy

)
+ ż (z̈ − Ωz) . (17)

Substitute the CR3BP-LT equations of motion from Equations (13) – (16) into this derivative ex-
pression and simplify:

∂Hnat

∂τ
= ẋ (2ẏ + altux) + ẏ

(
−2ẋ+ altuy

)
+ żaltuz = ~v • ~alt , (18)

where ~v = {ẋ ẏ ż}T is the spacecraft velocity vector in the rotating frame. The derivative of the
second term in Equation (12) is straightforwardly evaluated,

∂

∂τ
[~r • ~alt] = ~v • ~alt + ~r • ~̇alt . (19)

Combine Equations (18) and (19) to yield the time derivative of Hlt,

∂Hlt

∂τ
= −~r • ~̇alt . (20)

If ~alt is constant, both in magnitude and orientation as viewed in the rotating frame, ~̇alt = ~0 and
Hlt is constant during low-thrust propagations. That is, if ~alt is constant, the CR3BP-LT is a con-
servative system and the low-thrust Hamiltonian may be leveraged as an integral of the motion in
the low-thrust problem.

While preserving a fixed orientation, i.e., a fixed û vector, is a familiar attitude control strategy,
preserving a constant acceleration magnitude, alt, is less common. Consider the expression, alt =
f/m with a fixed orientation and a fixed thrust magnitude (û = constant, f = constant) but with
variable mass. Accordingly, the time derivative of ~alt, evaluated as

~̇alt =
fṁ

m2
û = −a2lt

l∗
Ispg0t∗

û , (21)

is non-zero when ṁ 6= 0. To determine if the derivative magnitude, ȧlt = −a2ltl∗/(Ispg0t∗), is
sufficiently small to be ignored, compare ȧlt with the energy range across the natural equilibrium
solutions, i.e., the Hnat values associated with the CR3BP Lagrange points. In the Earth-Moon
CR3BP-LT, this energy range, Hnat(L5) − Hnat(L1), where L5 and L1 are the natural equilib-
ria with the highest and lowest energies, respectively, is several orders of magnitude larger than
ȧlt. Subsequently, the variations in Hlt due to the time-varying spacecraft mass are very small
compared to the L5 → L1 energy range, and Hlt is reasonably approximated as a constant for
propagations with a maximum mass consumption of 15%, i.e., propagations with m(τ) > 0.85.
However, this assumption is not applicable to all three-body systems, particularly those with large
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l∗/t∗ ratios (resulting in a large ~̇alt magnitude) and those with very small L5 → L1 energy ranges,
e.g., the Sun-Earth system. In such systems, the characteristic quantities may be adjusted to pro-
duce an l∗/t∗ ratio that sufficiently decreases the magnitude of the Hlt derivative. As the analyses
in this investigation leverage the dynamics of the Earth-Moon system, alt and Hlt are assumed con-
stant without adjustment of the characteristic quantities such that the resulting dynamical properties
may be leveraged to inform the low-thrust trajectory design problem. Accordingly, the variable
acceleration quantity f/m is replaced by the constant value alt, removing the need for the mass
time-derivative in Equation (16). These simplifications – a constant low-thrust Hamiltonian and a
constant acceleration magnitude – effectively reduce the problem dimension by two.

By leveraging the simplifying assumption of a constant low-thrust acceleration vector, additional
insights are available to guide low-thrust trajectory design. Although Hnat does not represent a
dynamically significant quantity in the CR3BP-LT (rather, it is merely a component of the low-
thrust Hamiltonian, expressed in Equation (11)), it remains a useful reference to the natural CR3BP.
Low-thrust arcs are frequently a means to transition between natural structures with fixed Hnat

values, thus, the evolution of Hnat in the CR3BP-LT is of interest. While Hnat is not constant in
general when low-thrust is active, Hnat evolves independently of the spacecraft path when ~alt is
fixed in the rotating frame. This property is available from the time-derivative of Hnat, expressed
in Equation (18). As the ~alt vector is constant, this expression is integrable, yielding the equation

Hnat(τf )−Hnat(τ0) =

τf∫
τ0

~v • ~alt dτ = (~r(τf )− ~r(τ0)) • ~alt . (22)

Accordingly, the natural Hamiltonian value along any low-thrust arc is available given the initial
Hnat value, the initial and final position, and the fixed low-thrust acceleration vector. This rela-
tionship supplies useful insights that link the geometry of low-thrust arcs to the evolution of Hnat,
facilitating intuitive design strategies.

Finally, to further reduce the system complexity, only planar motion is explored. Thus, z(τ) =
ż(τ) = 0 for all τ , and the low-thrust pointing vector, û, is described by the planar vector

û =
{

cosα sinα 0
}T

. (23)

These simplifications facilitate the analysis of dynamical structures in the CR3BP-LT while also
supplying insights that are useful for spatial (3D) path planning.

ENERGY PLANES

In the planar CR3BP-LT, every low-thrust arc with ~alt fixed in the rotating frame lies entirely
within a plane oriented in x-y-Hnat space by the low-thrust orientation angle, α, and the magnitude,
alt. This energy plane includes the initial position and energy along the low-thrust arc, defined by
an initial control point, ~ρ0 =

{
x0 y0 Hnat,0

}T . A low-thrust trajectory may be represented by the
control point variation,

∆~ρ(τ) = ~ρ(τ)− ~ρ0 = ∆xx̂+ ∆yŷ + ∆HĤ (24)

where ~ρ(τ) =
{
x(τ) y(τ) Hnat(τ)

}T is a control point that reflects the spacecraft position and
energy at nondimensional time τ . Accordingly, ∆~ρ(τ) locates the spacecraft relative to the origin
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(a) The ∆~ρ(τ) vector lies within the energy plane (b) The energy plane-fixed frame, (x̂′′, ŷ′′, Ĥ ′′), is ori-
ented by α and γ relative to the CR3BP-LT frame, (x̂, ŷ,
Ĥ)

Figure 2. The energy plane is located and oriented relative to the rotating x-y frame
with a third dimension representing Hnat

of the energy plane, as depicted in Figure 2(a). The plane is oriented via two rotations: a rotation of
α about Ĥ = Ĥ ′ to the intermediate frame, (x̂′, ŷ′, Ĥ ′), followed by a rotation of γ about ŷ′ = ŷ′′ to
a frame fixed in the energy plane, (x̂′′, ŷ′′, Ĥ ′′), as seen in Figure 2(b). The first angle, α, orients the
low-thrust acceleration vector, as noted in Equation (23). The second rotation angle, γ, is related to
the low-thrust acceleration magnitude via the relationship

tan γ = −alt . (25)

As a short proof that such a plane exists with this orientation, rewrite the general control point
variation in Equation (24) in the energy plane-fixed frame,

∆~ρ =
[
∆xCαCγ + ∆ySαCγ −∆HSγ

]
x̂′′ + [∆yCα −∆xSα] ŷ′′+[

∆xCαSγ + ∆ySαSγ + ∆HCγ
]
Ĥ ′′ ,

(26)

where Cα = cosα, Sα = sinα, Cγ = cos γ, and Sγ = sin γ. A trajectory confined to the plane
possesses a zero-valued Ĥ ′′ component, thus, rearrange the terms in the Ĥ ′′ coordinate and equate
it to zero,

∆H + tan γ (∆xCα + ∆ySα) = 0 . (27)

When Equation (25) is substituted for the tan γ term, Equation (27) is identical to the energy path-
independence relationship in Equation (22). Subsequently, Equation (27) is truly equal to zero; the
out-of-plane component of ∆~ρ(τ) is identically zero for all τ and the low-thrust arc is confined to
the energy plane while ~alt remains fixed in the CR3BP-LT rotating frame. This plane is leveraged
to link a particular energy change to the geometry of a low-thrust transfer arc. If the geometry
of such a transfer is relatively unperturbed by the low-thrust acceleration vector, α and alt may be
selected to orient the energy plane to deliver a desired energy change based on the existing geometry.
Additionally, these results validate previous findings that the energy along low-thrust arcs varies
as a function of the angle between the low-thrust acceleration vector and the spacecraft velocity
vector, i.e., the angle between û and ~v.12 When ~v is aligned with û, the spacecraft moves “uphill”
on the energy plane, increasing the Hnat value. Similarly, a spacecraft with û ⊥ ~v progresses
across the energy plane at a constant value of Hnat. While these properties of the Hnat value are

7



straightforwardly derived from the time derivative in Equation (18), the energy plane supplies a
more intuitive representation of the energy variations. Similar to a hiker faced with a steep slope,
a low-thrust spacecraft may leverage sequential energy planes as a set of “switchbacks” to rapidly
increase energy. In fact, the well-known energy-optimal low-thrust spiral that employs a control law
with û = v̂ is simply a strategy to continuously reorient the energy plane such that the spacecraft is
always moving along the steepest energy gradient.

GATEWAY MANIPULATION USING ENERGY PLANES

Bounds on the spacecraft motion in the natural CR3BP, termed forbidden regions, are linked to
the instantaneous value of Hnat along a trajectory, thus, information about the evolution of Hnat

provided by an energy plane is useful to plan for desirable configurations of the forbidden regions.15

The Hnat values associated with the natural equilibrium solutions are significant as they represent
critical Hnat values at which the forbidden regions shrink (or grow) to permit (or restrict) access
to specific locations in the rotating frame. For example, for Hnat values slightly higher than the
Hnat(L1) value, the forbidden regions include a narrow neck near the L1 point, i.e., a “gateway,”
through which trajectories may pass to transit between the P1 and P2 regions. Similar gateways
form as Hnat increases past the L2 and L3 energy levels, and the Hnat value corresponding to the
L4/5 equilibrium points is the highest energy for which planar motion is restricted by the forbidden
regions in the CR3BP. Accordingly, to enable transit between regions of the rotating frame, theHnat

value along an arc is specified to achieve a desirable forbidden region configuration. Furthermore,
as the energy along a low-thrust arc is described by an energy plane, the coupled geometry-energy
challenge in navigating a gateway is mitigated by leveraging the energy plane.

To illustrate the manipulation of the forbidden regions via insights from an energy plane, consider
a ballistic path that passes from the system interior (i.e., near P1) through the L1 and L2 gateways
to the exterior region, as plotted in black in Figure 3(a). Assume that the path must be modified
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Figure 3. The transit behaviors of low-thrust arcs (colored) in the Earth-Moon
CR3BP-LT for alt = 7e-2 and α = 180◦ originating from different locations on a
ballistic arc (black) are predicted by a simple trigonometric property of the energy
plane geometry

to prohibit one or both gateway transits. To avoid escape to the system exterior, it is sufficient to
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reduce theHnat value along the low-thrust arc such that, at the location of theL2 gateway transit, the
spacecraftHnat value is lower thanHnat(L2). Further energy reductions may restrict the spacecraft
to the vicinity of P2, or prohibit transit into the P2 region entirely by closing theL1 gateway. Given a
low-thrust acceleration magnitude and orientation, limits on the thrust timing are available from the
associated energy planes. The last location along the ballistic arc where low-thrust may be leveraged
to sufficiently lower the Hnat value and prohibit transit through the L2 gateway is computed via a
trigonometric relationship. Let α = 180◦ to orient the energy plane such that Hnat decreases as the
spacecraft moves toward larger x values. Accordingly, a maximum x value is computed as follows,

maxxthrust = xL2 −
1

alt

[
Hnat,0 −Hnat(L2)

]
, (28)

where Hnat,0 is the energy of the ballistic arc and xL2 is the position of L2 on the x-axis. If the
low-thrust force is switched on after the spacecraft has progressed to a location such that x >
maxxthrust, the energy on the resulting low-thrust arc will not decrease sufficiently to close the L2

gateway. Thus, when the spacecraft reaches xL2 , the spacecraft may escape the system through the
L2 gateway. A similar minimum x-coordinate is available that marks the last location along the path
where the low-thrust force may be activated to close the L1 gateway at xL1 ,

minxthrust = xL1 −
1

alt

[
Hnat,0 −Hnat(L1)

]
. (29)

These bounds, identified as black triangles in Figure 3(b), are employed to categorize a set of low-
thrust arcs, all originating from the ballistic path at different x locations. Red arcs, plotted in the
xy-plane in Figure 3(a), initiate thrusting at x < minxthrust. Similarly, green arcs depart the
ballistic arc at locations such that x > maxxthrust. Arcs that commence thrusting between these
two bounds are plotted in blue. The energy plane analysis predicts that red arcs will fail to transit the
L1 gateway as the energy along these trajectories decreases below theL1 gateway energy, i.e., theL1

gateway is closed when the low-thrust arc arrives at the gateway. This prediction is supported by the
results in Figure 3(a); all of the red arcs remain in the interior region. The energy planes associated
with these arcs, plotted as dashed lines in Figure 3(b), visually demonstrate that the energy along
each red arc decreases to Hnat(L1) before or at xL1 . In contrast, as the blue arcs activate thrust
forces sufficiently late to avoid closing the L1 gateway before passing through, they may transit into
the P2 region but will not pass through the L2 gateway. This result is also supported by the plot,
as many blue arcs enter the P2 region and none transit the L2 gateway. However, a subset of these
trajectories do not pass through the L1 gateway; while the energy on these paths at the L1 gateway
is sufficiently high to permit transit, transit is not guaranteed. Finally, the green arcs add thrust at
locations where x > maxxthrust, thus, the Hnat values on these arcs are sufficiently high to allow
transit through the L2 gateway; again this is a sufficient condition and does not guarantee transit,
as evident from the configuration space representation in Figure 3(a). This analysis demonstrates
that the energy plane is a useful tool to predict the transit or capture behavior of a low-thrust arc.
The geometry of the ballistic transit arc employed in this example (seen in black in Figure 3(a)) is
only slightly modified by a low-thrust force during the approach to the P2 vicinity, thus, the energy
along the low-thrust arcs is straightforwardly controlled as the path moves predictably along the
prescribed energy plane. However, as the arcs traverse the dynamic regions near L1, P2, and L2, the
trajectory geometry is significantly affected by the addition of low-thrust and, thus, is more difficult
to predict. Regardless of these sensitivities, the energy along each low-thrust arc is confined to the
energy plane and transit (or capture) is well-predicted by the sufficient conditions derived from the
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energy history. This strategy is also applicable to scenarios other than gateway transit behavior; any
problem that requires a specific energy value at a specific location (i.e., targeting a control point) is
facilitated by the CR3BP-LT energy planes.

PLANAR LOW-THRUST EQUILIBRIUM SOLUTIONS

While insights from the energy plane are useful to modify ballistic paths, dynamical structures
from the CR3BP-LT supply additional geometries that may be leveraged to facilitate low-thrust
trajectory design. One such set of structures are the equilibrium solutions associated with the planar
(2D) dynamics in the CR3BP-LT; these solutions supply an initial characterization of the local
and global dynamics when low-thrust is included in the model. Linearizations of the nonlinear
dynamics relative to the equilibria describe local stable, unstable, and center manifolds. Global
invariant manifolds are constructed by transitioning the linear results to the nonlinear model.15

Manipulations of the low-thrust acceleration vector directly influence the number and location of
equilibrium solutions in the CR3BP-LT, which subsequently affects the existence and characteristics
of various nearby dynamical structures. Accordingly, the equilibrium solutions in the CR3BP-LT
are relevant to low-thrust mission applications, particularly as the equilibria locations evolve relative
to the familiar CR3BP equilibrium points.

To initiate a fundamental understanding of the flow in the CR3BP-LT, consider the simplified
planar dynamics with a fixed ~alt vector, consistent with the previously presented simplifications.
The equilibrium solutions solve Equations (13) and (14) when all time derivatives (ẋ, ẍ, ẏ, ÿ) are
zero. In the natural CR3BP (alt = 0), five such equilibria exist, i.e., the Lagrange points or libration
points.15 As the addition of the perturbing low-thrust acceleration introduces two new variables,
the thrust orientation angle, α, and magnitude, alt, the locations of the equilibrium solutions are
no longer fixed.12,13,14 Given a value of alt, the locations of the equilibrium solutions vary with
α, as plotted in Figure 4. The location of each equilibrium solution identifies a point in the xy-
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Figure 4. Low-thrust equilibrium solutions (colored by α) in the Earth-Moon
CR3BP-LT for alt = 7e-2 and α ∈ [−π, π]; the natural equilibrium solutions are
included as black asterisks

plane where the low-thrust acceleration vector offsets the natural acceleration vector to yield a
net-zero acceleration in the rotating frame. Accordingly, the closed, colored contours of equilibria
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depicted in Figure 4 are termed zero acceleration contours (ZACs).12 Each ZAC represents a set of
equilibria at a fixed alt value for the full range of α values with at least one equilibrium solution on
each ZAC for every value of α. To identify these structures independently of the natural equilibria
point solutions, let the ZACs near L1 and L2 be notated E1 and E2, and let the C-shaped ZAC
that includes points near L3 be labeled E3. These designations are specific to the alt value that
yields the ZACs. For instance, when alt is small, the ZACs remain near the natural solutions,
yielding five ZACs: E1, E2, . . . , E5. However, as alt increases, ZACs merge. In this investigation,
alt = 7e-2 is employed for consistency; at this low-thrust magnitude, the E3, E4 and E5 structures
are merged into the E3 ZAC. Distinct sets of equilibria at specific α values are denoted via function
notation, i.e., E3(−60◦) specifies the low-thrust equilibria on E3 at α = −60◦. To identify specific
equilibrium points on a ZAC, or within a set of equilibria at a specific angle on a ZAC, the notation
Eji (α) is employed, where i references the ZAC, Ei, and j designates the individual equilibria in
order of ascending Hlt value. For example, E3(−60◦) includes three equilibria, thus, E1

3(−60◦)
corresponds to the equilibria with the lowest Hlt value, E2

3(−60◦) possesses an intermediate Hlt

value, and E3
3(−60◦) is characterized by the highest Hlt value. In the absence of a superscript, e.g.,

E1(−60◦), only one equilibrium solution exists on the specified ZAC at the given angle.

As the locations of the low-thrust equilibrium solutions change with variations in alt and α, the
stability of each point also varies. The stability corresponding to a low-thrust equilibrium solution is
determined by inspecting the eigenvalues of the Hessian matrix, ∂~̇q/∂~q, evaluated at the equilibrium
point location where ~q = {x, y, ẋ, ẏ}T is the state vector and ~̇q reflects the time derivatives of
the states consistent with Equations (13) and (14).12,14 Real eigenvalues (in the complex plane)
represent stable (negative) and unstable (positive) motion, while eigenvalues on the imaginary axis
represent oscillatory motion. Combinations of the two types are also possible and are characterized
by spiral-shaped flow patterns. Due to the Hamiltonian nature of the CR3BP-LT with ~alt fixed in
the rotating frame, eigenvalues occur in pairs, either as real pairs symmetric across the imaginary
axis (i.e., ±λ) or as complex conjugate pairs. The former pair, characterized by stable and unstable
motion, is termed a saddle, while a pair of imaginary eigenvalues is denoted a center mode; the
combined saddle-center (e.g., spiral) motion is termed a mixed mode.

The linear modes associated with an equilibrium solution identify the local dynamics and can
predict nonlinear flow patterns. For example, oscillatory motion (periodic or quasi-periodic) is
available near an equilibrium solution with a center mode, or a center subspace. Similarly, trajec-
tories that asymptotically approach an equilibrium point in forward and reverse time are guided by
the stable and unstable manifolds of the saddle mode. The four-dimensional phase space near each
planar equilibrium point is described by four eigenvalues (two pairs), or two modes. In practice,
these modes occur in four different combinations: (i) saddle × center; (ii) center × center; (iii)
mixed × mixed; and (iv) saddle × saddle. The Earth-Moon CR3BP-LT equilibria for alt = 7e-2
are characterized by the first three combinations at various locations in the xy-plane, as apparent
in Figure 5. The dynamics near equilibria on E1 and E2 are consistent with the saddle × center
motion associated with L1 and L2, as observed in Figure 5(b). In contrast, E3 includes saddle ×
center motion on the “inner ring,” center × center motion on the “outer ring,” and some mixed ×
mixed motion near the tips of the C-shaped contour. Due to the proximity of different linear modes,
the low-thrust dynamics in some locations are very sensitive to the value of α employed to orient
the low-thrust vector. For instance, both center × center and saddle × center equilibrium solutions
are available near the L4 and L5 points at the same alt value and opposite (by 180◦) α values. As
a result, the global flow in a single area (e.g., near L4/5) is controllable via manipulations of the
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(b) A close-up view of the low-thrust equilibria (colored)
near the natural L1 and L2 points

Figure 5. Low-thrust equilibrium solutions (colored by stability) in the Earth-Moon
CR3BP-LT for alt = 7e-2 and α ∈ [−π, π]; the natural equilibrium solutions are
included as black asterisks

low-thrust acceleration vector and suitable parameters may be identified to yield flow structures for
inclusion in low-thrust trajectories.

STABLE AND UNSTABLE INVARIANT MANIFOLDS

The linear dynamics in the vicinity of the low-thrust equilibrium points are straightforwardly
transitioned to the full nonlinear model to supply insight into global flow patterns in the CR3BP-LT.
Whereas the eigenvalues of the Hessian matrix describe the type of motion (e.g., stable, unstable,
oscillatory), the eigenvector associated with each eigenvalue defines the direction of the flow in
four-dimensional space. That is, the eigenvector associated with the positive, real eigenvalue lies
tangent to the unstable manifold near the equilibrium solution. Similarly, the eigenvector associated
with the negative, real eigenvalue is tangent to the stable manifold near the equilibrium point. Thus,
by perturbing the equilibrium solution along the stable or unstable eigenvector and propagating the
resulting trajectory in the nonlinear model, a representation of the global stable or unstable invariant
manifold associated with the equilibrium point is constructed, as depicted for the natural L1, L2,
and L3 saddle modes in Figure 6. While these manifolds originate tangent to the eigenvectors
(represented by small, colored arrows) near the equilibria, the nonlinear flow diverges from the
linear approximation as the distance from the equilibrium solution increases. The natural triangular
points, characterized by center× center modes, do not possess stable or unstable manifolds to guide
flow into and out of theL4 orL5 regions. Additionally, note that theHnat value along each manifold
remains constant, as evident in Figure 6(b), asHnat is a constant integral of the motion in the natural
CR3BP.

Similar manifolds are constructed in the Earth-Moon CR3BP-LT, but these low-thrust structures
include key differences. For example, the Earth-Moon low-thrust equilibria for alt = 7e-2 and
α = 180◦, plotted as black diamonds in Figure 7(a), are similar in location and stability to the
natural equilibria, though the E3(180◦) solutions not located on the x-axis (i.e., E2

3(180◦) and
E3

3(180◦)) lie noticeably closer to the Moon than the natural triangular points. Furthermore, the ge-
ometries of the stable and unstable manifolds corresponding to the E1(180◦) and E2(180◦) points

12
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Figure 7. Manifolds of the Earth-Moon CR3BP-LT equilibria for alt = 7e-2 and
α = 180◦ maintain a similar geometry and qualitative stability characteristics as the
natural equilibria manifolds, but vary in energy

remain very similar to the natural manifolds plotted in Figure 6(a). In addition to the shifted trian-
gular point locations, a key difference between the low-thrust equilibria manifolds and the natural
equilibria manifolds is the energy profile for each manifold, plotted in Figures 7(b) and 6(b), re-
spectively. While Hnat is constant along the ballistic CR3BP arcs, Hnat varies with distance from
the originating state along the low-thrust structures. Accordingly, the low-thrust equilibrium point
manifolds may be employed to transit throughout the xy-plane while simultaneously delivering an
energy change prescribed by the associated energy plane.
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TRANSIT DESIGN LEVERAGING MANIFOLD ARCS

To illustrate the use of manifolds associated with the equilibrium points and the low-thrust energy
plane, consider the design of a transfer from the lunar vicinity to a stable orbit near the natural
Earth-Moon L5 point. A design may be constructed from the manifolds associated with the L1

and L2 equilibria that depart the lunar vicinity and move throughout the xy-plane. However, these
manifolds, plotted in Figure 6(a), do not approach the L5 region, even when propagated for longer
time intervals than depicted in the plot. Furthermore, these natural manifolds maintain a fixed Hnat

value consistent with the originating equilibrium point and, thus, do not approach the much higher
Hnat(L5) value. An additional complication arises from the fact that L5 is characterized by center
× center motion and, thus, possesses no manifolds to further attract the flow. Farrés mitigates this
problem when designing similar transfers in the Sun-Earth system that employ an additional force
using a solar sail by using a “brute force search” to identify sail orientations and states near the
triangular point that, when propagated in reverse time, may be linked to theE1(0) orE2(0) unstable
manifolds in both position and energy to construct an end-to-end transfer design.13 By leveraging
insights from energy planes and employing equilibrium solutions in the CR3BP-LT located near L5

with nontrivial saddle modes, a transfer is straightforwardly designed without a grid search.

A transfer design that incorporates both the energetic and geometric differences between the L5

and lunar regions is facilitated by leveraging manifolds of the low-thrust equilibria. Whereas the
natural CR3BP equilibria manifolds maintain fixed Hnat values, Hnat varies along the low-thrust
manifolds associated with the CR3BP-LT equilibria, as described by the energy plane corresponding
to the α and alt values of the originating equilibrium point. Accordingly, the Hnat value along each
manifold increases in the direction described by α. The E1 and E2 low-thrust equilibria remain
within a small, bounded area (in position and Hnat) regardless of α, but the orientation of the
energy plane associated with each equilibrium point varies linearly with α. Additionally, recall that
the E1 and E2 structures for alt = 7e-2, depicted in Figure 5(b), are entirely characterized by saddle
× center modes, thus, unstable manifolds departing the lunar region are available for all values of
α. A survey of these manifolds over the full range of α values indicates that, while small geometric
differences are apparent as α varies, the general flow pattern (as visualized in Figure 7(a)) remains
consistent. Thus, the energy on these manifolds may be designed relatively independently of the
manifold geometry by selecting an α value to supply an appropriate energy plane, i.e., an energy
plane sloped in a desirable direction.

To develop an initial guess for a transfer between the Moon and L5, the manifolds of an Earth-
Moon CR3BP-LT E2 solution are explored (alternatively, manifolds corresponding to an E1 point
may be leveraged). To maximize the Hnat value available at L5 on a low-thrust arc originating
from one of these equilibria, the energy plane is aligned with the Moon-L5 line, e.g., α = −120◦,
as plotted in Figure 8. However, even with the plane oriented to maximize the energy at the L5

location, the slope of the energy plane is too shallow to reachHnat(L5) at theL5 position, visualized
as an “energy gap” between the energy plane and the L5 point in x-y-Hnat space plotted in Figure
8(b). Accordingly, a single manifold originating from an E2 point cannot reach the natural L5 point
with the desired energy. Additional energy manipulations are required to construct a set of multiple
“energy switchbacks” that reach both the L5 position and energy level.

To facilitate an energy increase from Hnat(L2) to Hnat(L5), low-thrust flow originating near the
natural L5 point is linked to low-thrust flow near the Moon. In contrast to the natural CR3BP, the
CR3BP-LT possesses equilibrium points near L5 on the E3 structure with saddle × center motion.
In the Earth-Moon CR3BP-LT with alt = 7e-2, these equilibria, plotted as red points in Figure 5(a),

14



(a) Planar projection of the energy plane (b) Edge-on view of the energy plane; the natural L5

point possesses an Hnat value higher than those attain-
able on the energy plane at the location of the L5 point

Figure 8. The energy plane associated with the Earth-Moon CR3BP-LT E2(−120◦)
point for alt = 7e-2 is too shallow to reach Hnat(L5) at the L5 location

are located near L5 when α ≈ −60◦. While the locations and energies of the equilibria on E1 and
E2 vary only a small amount with α, the E3 equilibrium points shift over large distances throughout
the xy-plane as α varies. Accordingly, only the E1

3(−60◦) solution near L5 supplies manifolds that
evolve sufficiently to attract flow. The energy profiles of these manifolds are defined by the energy
plane oriented by α = −60◦, i.e., the Hnat value along each manifold increases along the P1 → L5

line, as depicted in Figure 9. A transfer from E2(−120◦) to E1
3(−60◦) may leverage flow along

(a) Planar projection (b) 3D view in x-y-Hnat space

Figure 9. The energy planes corresponding to the low-thrust equilibrium points
E1

3(−60◦) near L5 and E2(−120◦) contain all trajectories originating from the two
equilibria; control adjustments at the intersection of the two planes facilitates trans-
fers between the two points

both energy planes. Such a transfer originates at the E2(−120◦) point and subsequently flows along
the corresponding energy plane. Then, at an intersection between the E2(−120◦) energy plane and
the E1

3(−60◦) energy plane, the low-thrust parameters may be switched to match those associated
with the E1

3(−60◦) point, i.e., α is switched from −120◦ to −60◦. The resulting propagation then
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flows along the E1
3(−60◦) energy plane, which includes the E1

3(−60◦) equilibrium solution very
near the location and energy of the natural L5 point, facilitating the required energy change.

The intersection of two energy planes defines a line in x-y-Hnat space that is leveraged as a
hyperplane for the comparison of states on the two energy planes. Define a reference control point
anywhere on the line, ~ρref , and let l represent the distance from ~ρref along the xy-projection of
the line with l > 0 corresponding to increasing values of Hnat. That is, l represents the physical
distance between ~ρref and another point on the line. The set of control points on the intersection
line,H1,2, are given by

H1,2 : ~ρ = ~ρref + l ~Hint , (30)

where ~Hint is derived from the cross product of the two energy plane normal vectors, Ĥ ′′1 and Ĥ ′′2 ,

~Hint =
{

cos
(
[α1 + α2]/2

)
sin
(
[α1 + α2]/2

)
alt cos

(
[α2 − α1]/2

)}T
, (31)

and both energy planes correspond to the same alt value (i.e., the same γ angle) but different α
values. The ~Hint vector supplies the normalized slope of the planar projection of the intersection
line in the first two components as well as the scaled energy slope in the third component to deliver
Hnat given ~ρref and l. To identify trajectories with similar positions and velocities on H1,2, the
planar projection of the intersection line is leveraged as a stopping condition, i.e., a hyperplane
ΣH1,2 , for low-thrust manifolds propagated from the E2(−120◦) and E1

3(−60◦) points. Because
H1,2 defines points that lie on both energy planes, proximity between two points (i.e., similar l
values) on the projection, ΣH1,2 , indicates not only similar positions in the xy-plane, but also similar
Hnat values. Furthermore, a switch from α1 to α2 at ΣH1,2 ensures that the trajectory transitions
from the first energy plane to the second and, thus, is capable of reaching Hnat(L5) at the L5

location.

While the distance along ΣH1,2 relative to ~ρref , represented by l, supplies position and energy
information, an additional coordinate is required to represent the full spacecraft state. Given l, the
spacecraft position and Hnat value are computed via Equation (30). Additionally, the velocity mag-
nitude at this point is available by solving theHnat expression in Equation (3) for v. Only the veloc-
ity direction is undefined, thus, a Poincaré map leveraging the coordinates l and θv = arctan(ẏ/ẋ)
supplies the complete spacecraft state; intersections on this map guarantee full state continuity be-
tween trajectories. Such a map is leveraged to identify a transfer between the unstable manifolds of
E2(−120◦), plotted in magenta in Figure 10(a), and the stable manifolds of E1

3(−60◦), plotted in
blue. Each manifold crosses the the hyperplane (dashed red in Figure 10(a)), ΣH1,2 (or, equivalently,
H1,2 in x-y-Hnat space), at least once. The hyperplane crossing points are transformed to l and θv
coordinates and plotted in polar form on the Poincaré map in Figure 10(b). Each ΣH1,2 crossing
on the E1

3(−60◦) stable manifolds is marked by a black square and labeled with a lowercase ro-
man numeral to link the points between configuration space and the map. The E2(−120◦) unstable
manifold crossings are marked by “x” symbols; these crossings are left unlabeled as several occur
far from the primaries and are not depicted in Figure 10(a). In this example, ~ρref is selected such
that the reference Hnat value is identical to the natural L2 energy. Accordingly, l > 0 corresponds
to energies greater than Hnat(L2) and l < 0 indicates lower energy values; the boundary at l = 0 is
plotted in gray in Figure 10(b) for reference.

By leveraging the information available from the Poincaré map, a transfer from the Moon to L5

is constructed. Two points near l = 0 and θv = 160◦, one from a stable manifold and another from
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(a) xy-projection of the manifolds crossing the energy plane in-
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Figure 10. The stable manifolds (blue) of the low-thrust L5 point for α = −60◦ and
the unstable manifolds (magenta) of the low-thrust L2 point for α = −120◦ are prop-
agated in the Earth-Moon CR3BP-LT for alt = 7e-2; crossings of the energy plane
intersection line are marked and included in a Poincaré map to identify a transfer
with minimal discontinuities

an unstable manifold, are selected due to their close proximity on the map. The corresponding man-
ifolds, plotted in blue and magenta in Figure 11, are discontinuous in position, velocity, and natural 
Hamiltonian value. Thus, some corrections are required. To preserve the lunar flybys, the initial
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Figure 11. The unstable E2(−120◦) manifold (magenta), stable E1
3(−60◦) manifold

(blue), and natural L5 short period orbit (green) are linked together as an initial de-
sign for a Moon to L5 transfer

state on the E2(−120◦) unstable manifold is constrained in position and energy. Additionally, near
the destination, a single revolution of a small, natural L5 short period orbit is included to ensure
the spacecraft remains near L5 after arrival; this orbit is fully constrained to preserve its geometry
and energy. Each manifold is subdivided into smaller segments, each of which maintains a fixed α
value and a thrust magnitude of alt = 7e-2. A multiple shooting differential corrections algorithm
is then applied to reduce the position and velocity discontinuities between the arcs, resulting in the
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transfer plotted as a continuous solid arc in Figure 12. The initial design is first corrected in the
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Figure 12. Following corrections, the transfer is continuous in position and velocity
and energy; the majority of the transfer leverages low-thrust (orange segments) to
reach the natural L5 SPO (blue)

simplified CR3BP-LT with constant alt on all low-thrust arcs. Following convergence in the sim-
plified model, the transfer is transitioned to the unsimplified CR3BP-LT with variable mass (i.e.,
variable alt = f/m) and an engine efficiency of Isp = 3000 seconds. Although the initial design is
constructed by leveraging insights from the simplified model with a constant alt value, convergence
is rapid. The final spacecraft mass along the converged trajectory in Figure 12 is 0.9668, thus, the
spacecraft requires propellant equivalent to approximately 3.32% of the spacecraft wet mass to com-
plete the transfer. This mass fraction may be reduced further by applying optimization techniques,
but represents a feasible scenario even without optimization (Deep Space 1, with low-thrust capa-
bilities consistent with this example, was equipped with 82 kg of Xenon propellant for maneuvers,
i.e., about 17% of the spacecraft wet mass∗).

As the initial design, represented by dashed arcs, includes minimal discontinuities, the converged

∗See the Deep Space 1 Asteroid Flyby press kit, https://www.jpl.nasa.gov/news/press kits/ds1asteroid.pdf
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solution consequently maintains the geometry of the initial guess in x-y-Hnat space. Addition-
ally, the control history, plotted in Figure 12(d), remains similar to the preliminary solution with
α ≈ −120◦ for the first 5.5 time units and reaches α ≈ −60◦ over the duration of the final thrust
segments. These similarities are not surprising as the differential corrections algorithm employs
an update that minimizes the variations from the initial design (i.e., a “minimum-norm” update).
While the convergence properties of the algorithm depend on many variables, including the nu-
merical implementation strategy, convergence is generally more rapid and more consistent with the
initial design when the discontinuities are initially small; a poor (i.e., very discontinuous) input
forces the differential corrections algorithm to make more significant changes to the design to meet
the specified constraints. Thus, by leveraging insights from the CR3BP-LT, an initial design is
straightforwardly constructed with minimal discontinuities in both configuration space and energy
that may be rapidly corrected. In contrast to transfer construction procedures employing only arcs
from the natural CR3BP, these low-thrust dynamical insights supply a preliminary control profile
(i.e., α for the low-thrust segments) that subsequently delivers a suitable transfer geometry and a
suitable energy profile.

CONCLUSION

By leveraging reasonable simplifying assumptions, the high-dimensional, non-conservative low-
thrust multi-body model is reduced to a simpler, conservative system with properties that supply
useful insights for the generation of preliminary low-thrust trajectory designs. One such property
is the existence of an energy plane that describes the evolution of the natural Hamiltonian term
along any low-thrust arc. The geometry of the plane mitigates the challenge of specifying an initial
guess for the low-thrust acceleration vector magnitude and orientation, i.e., an initial guess for
the control history. To demonstrate the usefulness of this plane, the transit and capture properties
of various low-thrust arcs originating from a ballistic transit path are characterized by employing
simple trigonometric insights from the energy plane. Additionally, a transfer between the Moon
and L5 Lagrange point is designed by leveraging multiple energy planes to deliver the required
geometric and energetic trajectories.
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