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Dead-time effects on the voltage spectrum of a PWM inverter
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*Department of Electrical and Electronic Engineering, Uatisity of Nottingham,
University Park, Nottingham NG7 2RD, United Kingdom
An inverter converts a direct-current power supply to aerakting-current power supply. This con-
version is achieved by switching the output between thetsptihigh frequency. The resulting output
voltage may be described by a high-frequency train of végiabdth pulses. Pulse widths are slowly
modulated so that this output waveform contains a prestribe-frequency component, which may
then be isolated by an appropriate filtering regime. Tedkesdfor determining the full harmonic spec-
trum of input and output voltages and currents are well éisted, at least for an idealised mathematical
model of the inverter. However, this model assumes thatgdgmiof inverter configuration can be ef-
fected instantaneously, which is not quite the case in jpeacin fact, a small amount afead timemust
be incorporated into switching regimes in order to avoidsbiocuits of the input. Although dead time
is an important feature of real power conversion devicasefiftects on output voltage spectra have not
previously been fully determined (except by imposing ratiestrictive approximations). This situation
is remedied in the present paper, in which we present clfised-expressions for the coefficients of the
harmonic spectrum, corroborated by simulations.

Keywords power inverter, Fourier spectrum, harmonics, dead time

1. Introduction

The power inverter is an important technology for synthiegian alternating-current power supply from
a direct-current source supply. The device achieves thigpsupply conversion through semiconduc-
tor ‘switches’, which are rapidly opened and closed ace@ydd a prescribednodulation strategy
thereby changing the configuration of the device at hightfeaqy. In the simple inverter design consid-
ered here, the output of the device is a sequence of squarepudses, the widths of which are slowly
modulated at the frequency of the desired output. Sudke width modulatioliPWM) is used in a
variety of electronic devices, including Class-D amplgié@erhout & Dooper, 2010; Caat al., 2011),
fibre-optic communications equipment (Suh, 1987), and nodingrs.

The slow modulation of the rapid switching in such devices th@ unfortunate side-effect that the
output voltages have complicated harmonic spectra. Kriydef such spectra is of significant practical
interest, particularly from the point of view of so-callpdwer quality and to inform the design of the
filters needed to remove any unwanted frequency compondutsdealised mathematical model is
well established, and for a number of different PWM-basedgreconversion devices the harmonic
spectra of the output voltage signals are well documentegl, for example, Holmes & Lipo, 2003).
Recovery of explicit expressions for tirgut currentspectra is also feasible, as we have demonstrated
elsewhere (Cox, 2009; Cox & Creagh, 2009).

Unfortunately, the present model assumes that the semictord'switches’ in power conversion
devices operate instantaneously, which is not achievabfgactice. To accommodate the nonzero
switching durations of real semiconductor devices, svirtghimes must be adjusted in order to avoid
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a situation in which both switches conduct simultaneously taus short-circuit the input. This adjust-
ment is achieved through the addition of short perioddezfd time during which both switches are set
to remain open, to allow time for the devices to change stéteowt incident.

Previous investigations into the effects of dead time havgely been examinations of its effects
on time-domain representations of the voltage and curreneforms and attempts to mitigate these
through re-adjustment of the inverter (Leggate & Kerkma®97; Lin, 2002; Munoz & Lipo, 1999;
Murai et al, 1992; Olivieraet al, 2007). That is not to say there have been no previous attetopt
calculate the effects of dead time on the harmonic spectoutisuch ventures have employed additional
approximations or unnecessarily restrictive assumptdagit the switching times (Chierchie & Paolini,
2010; Wuet al,, 1999).

In this paper, we demonstrate that the effects of dead timebeancorporated into the harmonic
spectrum of a power invertarithoutsuch additional approximations, and in a relatively stidfigrward
manner. As one of the authors has argued elsewhere (Cox, 208X Creagh, 2009), it is prudent to
avoid the method typically adopted in the engineeringditere (see Black, 1953) in favour of something
less algebraically cumbersome. Other methods for detémmspectra exist (see Pascedlal, 2003;
Song & Sarwate, 2003), but the technique espoused here sedmshe most straightforward.

There have been two notable prior attempts to determineftbete of switching dead time on the
Fourier spectrum of the output voltages. First we mentionétval. (1999), who examine a two-phase
(H-bridge) inverter with an inductive load. They use Blackiethod to determine the Fourier spec-
trum of the output in the presence of dead time. In the coufgleeir analysis, an approximation is
made, which amounts to the introduction of errors of the oad¢he (small) ratio of the power supply
frequency to the switching frequenayd/ax). The order of magnitude of the error due to this approx-
imation is consistent with the discrepancies between thbulated theoretical and simulated results.
In a more recent work, Chierchie & Paolini (2010) derive aggahformula for the Fourier spectrum
coefficients, with and without dead time, but these formalaswritten in terms of the switching times,
so they give no immediate insight into the output voltagecspen. One particular form of switching
(so-callednatural sampling is then analysed in detail. Unfortunately, this analysiéimited to the
case in which the ratiox/a, is an integer and a further approximation is made to the @&nsfor the
switching times. Perhaps most unsatisfactory from an egiins standpoint is the fact that the final
resultis left in terms of the switching times, so that no-selfitained explicit expression for the Fourier
coefficients is provided.

We begin our presentation of the effects of dead time on thpubwoltage spectrum of a PWM
inverter, in Section 2, with a description of the inverteddan consideration, before establishing the
mathematical formulation of the problem in Section 3. Thalgsis proper can be found in Section 4.
Corroborating numerical results are presented in Sectidollbwed by a brief discussion and conclu-
sion in Section 6.

2. Dead-time effectson a PWM inverter

Figure 1 shows the single-phase inverter considered inrégept paper; for simplicity of notation, all
voltages have been nondimensionalised so that the supjtgges take the valuesl. This inverter
represents the basic building block of most power convertém what we shall refer to as thdeal
model, one side of the load is held at zero volts while two clwds connect the other side of the load
alternately to the upper and lower supply rails (in pragtibe switching is achieved using transistors).
In parallel with these switches are diodes, which conduatetu only in the direction shown; their
significance will be explained in due course. The switchingtants of the ideal output voltage are



FiG. 1. Inverter design. Switchéy andS, operate alternately, at high frequency, to generate a-gpesgidic output voltage(t)
whose low-frequency components are intended to deliveescpbed alternating-current power supply.

denoted byAn,, and By, and the corresponding output voltage pulse train is ilist in Figure 2(a).
However, in reality the semiconductor switches have sigguifi turn-on and turn-off times, and so both
switches may conduct around the switching instants, legtdia short-circuit of the input power supply,
which is clearly unacceptable. One remedy is as followsayd#ie ‘on’ signal for one switch (this delay
is thedead time Ty) to allow the other to completely turn off (to avoid a shaireait of the input).

In the mathematical model presented in Section 3, this @mbrof introducing delays will correspond
to a parameter valud = 1. The output voltage associated with this case is depictdedgure 2(b),
together with that for the ideal case in Figure 2(a). Deace toan instead be introduced by advancing
all turn-off times byTy/2 and delaying all turn-on times by the same amount. Thisredteve approach
will be associated with a parameter valdie= 0. Figure 2(c) shows the corresponding output voltage
waveform.

Clearly, when the upper switcly) is closed,v(t) = 1, and with the lower switchS) closed,
v(t) = —1. During a dead-time episode (when both switches are offenipstantaneous output voltage
v(t) depends on the direction of the current through the load dhiection determines which of the
diodes,D; or D2, conducts. For example, suppose the curr@ntthrough the load is negative. Then
during the dead time around the switchioffof S, and the switchingn of S, diodeD1 conducts and
D, blocks the current. For the same current polarity, durirgdbad time aroun§, switchingon and
S off, D; again conducts an, again blocks the current. The net result is an increase iavbege
voltage seen at the output across that switching cycle. Byrast, if the curreni(t) is positive then
there is a net decrease in the average voltage over the svgtcycle. These dead-time effects modify
the spectrum of the output voltage.

For completeness, we note that if the current is close to aetiee beginning of the dead time and
decreases to zero during the dead time, then it will remaio & the rest of the dead-time period,
because the reverse-polarised diode blocks the current fidvis phenomenon can last for several
switching periods, and causes additional distortion ofdhgut voltage, beyond that modelled below.
However, we anticipate that considering effects of thiglkivould result in only small changes to the
spectrum recovered for typical ratios/ a.
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FiG. 2. Output voltage/(t). (a) Ideal case, with no dead time. (b) Modified switchingetinwith dead time, in the cage= 1.
(c) Modified switching times, with dead time, in the case: 0. Note that the effect of dead time on the switching dependb®
polarity of the output curreri(t).

3. Mathematical formulation

In this section, we develop a mathematical model for a sttegigpower inverter. For clarity of expo-
sition, we initially describe the model in the absence of dagd time. The modifications necessary
to accommodate dead time are identified only once the fundteiseof the original ‘ideal’ model have
been established. For further details of the simpler (zkyad-time model) we also encourage the reader
to consult Cox (2009).

The output voltage without any dead time, as pictured in Fe@{a), is given by

[ 41 for Bpo1 <t <Am,
V(t)_{ -1 for Am<t < Bm. @

The switching time#\y, andBy, satisfymTs < An < By < (m+ 1) Ts, whereTs is the fundamental carrier
period (see Figure 3). We shall refer to the interfvalls, (m+ 1)Ts) as themth switching period. If, for
eacht, t; andty, we let

1 ifty<t<ty,
0 otherwise,

Wtitt) = { @
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FiG. 3. PWM switching, illustrated for natural sampling of tiefarence signad(t). The voltagev(t) takes the values-1 or —1
according to whether the value of the low-frequency refeeemaves(t) is greater than or less than the value of the high-frequency
triangular carrier wave.

we may write
V) =1-2 5 ¢(t;AmBm). (3)

The switching times may be determined in a variety of waypedeing on thesamplingmethod
to be used. So-calledatural sampings illustrated in Figure 3: the switching times are defined by
the intersection of a low-frequency reference waftg (this is the desired alternating-current output
voltage) with a high-frequency piecewise-linear carri@ve. Alternatively, the reference wave may
be sampled at regular intervals, and this sampled valuetosgetermine intersections with the carrier
wave and hence the switching times. Both naturally and estyusampled PWM are considered in
this work. Furthermore, we treat two variants of regular gamg: if the reference signal is sampled
only at the positive peaks of the triangular carrier waverf@or only at the negative peaks), this defines
symmetricalregularly sampled PWM, whereas if the reference wave is kairgtt both positive and
negative peaks of the carrier, this defimsymmetricategularly sampled PWM.

For any sampling method, the ideal switching times may b#evrin the form

An=(Mm+ ag)Ts, Bm=(m+ Br?-.)Ts, (4)

where the superscrigt = N, SRor ARto denote, respectively, natural sampling, symmetriogili i
sampling and asymmetrical regular sampling. The fractiewétching times are given in terms of the
reference signal by

an = F(1+s(m+amTy)), (5)
N = 1(B—s(m+BNTy)), (6)
ant = 3(1+s(mT)), (7
o= 3(3-s(mT)), (8)
ams = 3(1+s(mT)), 9)
o= 1B—s((m+1/2)Ty). (10)



Note that the switching times are determined explicitly éither form of regular sampling, but only
implicitly for natural sampling. This crucial differencedds to slight differences in our treatment of
the two sampling types. However, the corresponding modiifioa that must be made to the standard
method (see Black, 1953) are considerably greater (Holmeipé&, 2003).

In this paper, results are calculated for a single-frequeeference wave,

s(t) = Mcog wot), (11)

where the amplitud®! is often referred to as theodulation depthWith relatively minor modifications,
but a considerable volume of additional algebra, the metisadl here can easily be extended to cater
for multiple-frequency reference signals. In the abserfcdead time, the output voltage spectrum
which corresponds with (11) is well known (Holmes & Lipo, Z)0In applications, the output voltage
switches between voltage levels at a frequency signifigamixcess of that of the reference signal, so
thatwy Ts < 1.

3.1 Deadtime

In practice, as discussed above, the switching is subjgariods of dead time, during which the output
voltage depends on the output current polarity. A full detieation of the current polarity requires a full
knowledge of the output voltage, and this interdependesaxdd to an apparently intractable problem.

However, an extremely good modelling assumption is to sspploat the current polarity changes
sign precisely twice during each fundamental period of #ference signal. It is therefore reasonable
to suppose that the current polarity is described by a stegtiint — W(t), as given by

+1, —Im+ @ <ot < int+ @,
W(t) = sgncof mpt — @) = (12)
-1, In+ @ <awt<3nt+ @,

with W(t) = W(t + 21/ w,) for all t. The determination of the phase angtérequires a further mod-
elling assumption. In the engineering literature, the agstion is that®’ is the phase displacement
between the fundamental components of the ideal outpiag®land output current, which can readily
be determined once the impedance of the output load is kniovemy event, we shall tak@’ as known.

We now state the manner in which the switching times of thea@utput voltage are determined.
For regular sampling, these times (including dead fig)eare prescribed by

Ap=An+3(0-¥(ME))Ty,  Bp=Bm+3(0+W¥(ts,)Ta, (13)
where
B mTs (symmetrical regular sampling, SR), (14)
B (m+1/2)Ts (asymmetrical regular sampling, AR).

Here, the ideal switching time&,, and By, are specified by (4), (7)—(10), and we recall that we have
introduced the parametértaking the values 0 and 1 for the two dead-time implememataescribed
above. For natural sampling, the actual switching timegasen (implicitly) by

An = (Mm+3(1+SAY)) Ts+3(3— WAL Ta, (15)
By, = (m+i(3—s(By))Ts+2(5+W(B)Ty (16)

BTN



Before we turn to our analysis of the Fourier spectrum of thgpuat voltagev(t), we record two
essential tools: we shall make repeated use of the Poisssumimation formula (see, for example,
Courant & Hilbert, 1989)

y hm= Y / ™MiTh (1) dr (17)
m=—oco Mm=—oc —®
and the Jacobi—Anger identity (Watson, 1944)
gzcosd _ Z i”Jn(z)e“ie. (18)
Nn=—oo

4. Results
4.1 Natural sampling

In natural sampling regimes, switching times are known amiglicitly, so it is remarkable that it is
possible to recover a closed-form expression for (3). Ryegis made by first applying the Poisson
re-summation formula (17) to (3), to give

Vt)=1-2 % /j’ ™Myt A(T), B(1)) dt, (19)

wheret — A(T) andT — B(T) are continuous functions with the property tdgém) = A, andB(m) =
By, for every integem. In view of (15) and (16),

A1) = (t1+2(1+McofwA(1)))) Ts+3(8—WAD))Ta= (T+a(1)Ts, (20)
B(r) = (7+3(3—McogwB(1))))Ts+ 3(6+W¥(B(1))Ta = (1+B(1))Ts. (21)

The integrand in (19) is nonzero when
(T+a(1)Ts<t < (T+B(1))Ts. (22)

However, it turns out to be helpful to introduce functiams a(t) andt — b(t) such that

at)=a(rn) whent = (14 a(1))Ts, (23)
b(t) =B(1) whent = (74 B(1))Ts. (24)

Then, recalling (20) and (21), we see thét) andb(t) may be expressed explicitly in termstdhrough

at) =
bit) =

Z(1+Mcogant)) +3(8 —W(t)Ta/Ts, (25)
F(3—Mcogwpt)) + 3 (5 + W(1))Ta/Ts. (26)
Using properties (23) and (24), we may equivalently writadition (22) as

t t
£ b <T< g -aw. (27)



The integrals in (19) are now readily calculated; thus

© t/Teal)
vit) = 1-2 Z/ ™ gr
mE= 0 /t/Ts—b(t)

= 1-2(b(t)-a(t))-2 % " (2rmi) L™/ Ts {e*ZTrm'a(t) _ e—zrrm'b(t)}

M=—o
= M COS(OJOI) — &L[J(t) + Z/ (mni)*leZm'm/Tse*fTiﬂéTd/Ts «
Ts =
{imeimrr(%M cos aot)—¥(t)Ty/Ts) _ (7i)meimrr(f%M cos(wot)JrW(t)Td/Ts)} 7 (28)

where the notatioiy’ indicates that the terrm = 0 is omitted from the sum. We note that the only ele-
ment of this formula that reflects the differentimplemeiotas of dead time is the phase term involving
d. Itis evident from (28) that the low-frequency contribuitgto the spectrum are due to

v(t)NMcos(wot)fzqu(t)Jp--, (29)

that is, precisely from the reference signal and a smalltifumde square wave with amplitude propor-
tional to the dead-time rati®y/Ts.

To make further progress, we note that the exponentials8i \{ich involve cosat and W(t)
are all 21/ wo-periodic, so may each be expressed in terms of a suitableef@eries. In fact, each
exponential may be written in the form

eiz{cos{wotH)\W(t)} = g &(Z,/\)Ginwot, (30)
N=—00
where the Fourier series coefficie®gz A ) may be obtained from
W [2TV o
=5 o
Using the Jacobi—Anger relation (18) and the definitiodirom (12), we find

31(2, A ) eiz(coi(mt)Jr)\‘-lJ(t))efinabt dt. (31)

[

S$(2.4) = OS2 ) K@i+ si2)" T [(p— )] 2PV (~1)P" 1), (32)
p=—o0
p#n

A Fourier series representation féi(t) is also readily obtained, and is given by

1
4 =2 (=12
w(t):E % L
n=13,...

Finally, combining (28), (32) and (33), we find the outputtagk to be

cogn(wet — @)). (33)

>

V(t) = M Coq%t) — %(i < ﬂ Coin(%t _ (D/))

>

+ i/ g im(mni)flefimnb"rd/Tseimnnt {&(%THHM,/\) o (*1)ms1(7%7'm']|\/|,)\)} ,(34)

N



where
2Ty

A=— 35
TsM (35)
and the contributory frequencies in (34) are
2m
mn = Nt + m? = Nty + Mas. (36)
S

Consideration of the form of the term
S‘l(%mnMa)\ ) - (71)m31(7%mnM5)\ )

reveals that there are contributions/o) with frequencywn, only whenm+nis odd. More explicitly,
(34) may be written as
1
Ty 2 (—1)20D
81y % cogn(wet — @)

—=1,0,...

Z imn(mni)—le—imnb‘l'd/Tseiwmnt % (37)

+
1 mEny o g
cogmmMTg/Ts)dn(z M) (1 — (=1)™") —sin(rmTg/Ts) me(Q"mM)Emnp ;
p=—o
pn
where
Emnp= ((=1)P"=1)(1+ (-1)™P). (38)

It is apparent from (37) that tHiendamentatomponent of the actual voltage (i.e., the component
with frequencywy) differs from the reference voltagét) in both amplitude and phase, although these
differences are small for all typical dead-time impleméntas (Ty/Ts on the order of a few percent).
For a given value of the rati®y /T, the relative error in the fundamental is greater for smaiidues of
the modulation deptM.

4.2 Asymmetrical regular sampling

For regular sampling, the switching times are known exiicso the Fourier transform of the output
voltage V{w), may be obtained directly from (3). Thus, for asymmetrieahpling, from (3), (9), (10),
(11), (13) and (14), it follows that, faw # 0,

() /'°° e 1y (1) dt = —2./joe*iwt i W(t; Am, B clt

J —00

- 2(,@)71 (e—iwAm B efinm)

[ee]

M s ‘?Ms

— 2(_iw)71 efimwTs %

i

—00

{ef%linseiw(f%TsM cosmunTs)+3 T¥(MTe)—28Ty)

e JiwTsgw(3TsM cos((m+%)%Ts)—%TdW((er%)Ts)—%aTd)} . (39)



Poisson re-summing then gives

5 2 < © 2mmit o iwTsT —SiwdTy
=— s d 40
W)=y 3 [ @me e #ogdr (40)
where
Q1) = o HWTs @~ TM cog woTT)+3 TaW(1Ts))
3; i 1 1 1 1 (41)
. efaleselw(szM cos(wo(r+§)Ts)fdeW((r+§)Ts)).
After substituting = 1T, we find, equivalently, that
5 2 o [ onimyTenict - LiwdTy
= s t)dt 42
W)= o 3 [ @ e Bt (42)
where
q(t) = e—%inseiw(f%lTsM cos(wot)+3 Tg¥(t))
(43)

_ e qiwTsgw(3TMcosan(t+3Ts)~3TaW(t+3Ts))

The time-dependent exponentials in (43) may now be writeeRaurier series, since they are each of
the formin (30). Thus
q(t) = e 19T Y Si(—FWTM, A )t g AT Y SH(FWTM,A)Endten@s2 - (44)

N=-—oo0 N=—oo

whereA is given in (35). Combining (42) and (44) then gives

\7(&)) . Ze’%iwéTd 00 e,i(wfwmn)t {ef%inss‘l(ileM A)ieflz’inSSj(leM )\)eniast/Z} dt
(45)
Finally, by evaluating the integral in (45), we recover
v(t) = 3 Vare e, (46)

mn
where (provideduoy, # 0)

2e 1iQmndTa/Ts

V,ﬁff: [e’%igm”&(—%ﬂmnl\ﬂ,)\) _ef%ianSn(%anM,A)einnob/ws (47)

—iQmn
and
Qmn= TsWmn = Ny Ts + 27mm. (48)
More explicitly, (47) is given by (provide@mn # 0)
2 1; 1 .
Vrﬁr? _ 5 Jn(%anM)COi%anTd/Ts)ei“Iane §|an6Td/Ts|n((_1)m_ (_1)n)
mn

2 S (R M) SN QT T S Hime T T (49)
1Qmnp L., n(p—n)

pn

+




where
Frnp= (1— (=1)P"")((-=1)™+ (-1)P), (50)

andVAR = 0 wheneveQmn = 0.

It follows from (49) and (50) tha¥AR = 0 whenevem+ n is even. In particular, therefore, as for
natural sampling, the even low-order harmonics (i.e. tfosen= 0 and evem) are absent from the
spectrum.

4.3 Symmetrical regular sampling

Following the procedure described in the previous subsedbiut for symmetrical regular sampling, we
find that (3), (7), (8), (11), (13) and (14) give

v(t) = 3 Vi, (51)

where (provided2ny, # 0) the Fourier coefficients are now

2

V= ——=—
mn —|an

e 31QmndTa/Ts [ei‘%igmn&(* i.anM A)— efiian&(%anMM\ ):| . (52)

More explicitly, (52) is given by (wheneveé?y, # 0)

2 . | o
Van = (G QmiM) oS3 Oy Teje #19me219m0Ts/Tin(e-310m — (—)n)
mn
2 2 . glp-ne . T .
+mp£ Jp(%anM)sm(%anTd/Ts) n_(pin)e 21Qmng 2|an6Td/TS|nGmnp, (53)
p#n

where N

Gmnp= (1~ (—1)P"")(e 2™ 4 (~1)P); (54)

andvrﬁ,ﬁ‘: 0 wheneveQ,, = 0. No particular cancellation occurs in this case, so alirfwarics are
present.

5. Corraboration of analytical results

In this section, we compare our closed-form expressionthfharmonic spectrum oft) with results
from numerical ‘simulations’ of the inverter, obtainedngiMatlab.

The solid lines in Figures 4—6 represent the harmonic corpisrobtained from our simulations. To
give numerical results that are as clean as possible, wesehbe ratiass/w, to be an integer (although
this restriction is not necessary for any of our analytiesiults). We choose a large number of equally
spaced sample points over one period of the reference sitpeal for each sample point we determine
the corresponding output voltage, using the formulas ini®&e@. Finally, we apply a Fast Fourier
Transform (FFT) with 50000 points per switching period tis tisampled) output waveform. The nu-
merical approximations to the Fourier coefficients thusaigd are plotted alongside those obtained
through the analytical expressions derived in Section 4métical and analytical results are marked,
respectively, by solid and dashed lines. The results gl@tte those corresponding to parameter values
ws/wr =21,M = 0.8, @ = 70.5 x /180 and (whenever dead time is implement&g)Ts = 0.04.



While the choice of an integer ratios/ w, leads to particularly clean numerical results, it has theeso
what unfortunate consequence that harmonics can ovedapxédmple, in this case contributions to the
frequency 8y, can arise froom=0,n= 3 orm=1,n= —18, etc. Thus to determine the contribution
at any given frequency, one must sum all such contributifersaf irrational ratio of frequencies, of
course, no such issue arises).

Results shown are fa¥ = 1; we have obtained similar agreement between numericehaalgtical
results ford = 0 dead time. Although, in applications, the dead time r&ioTs is typically around
0.01, we takely/Ts = 0.04 here so that the effects of dead time are sufficiently esiaggd to be visible
in our plots. There is clearly excellent agreement betwkearly and simulation.
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FiG. 4. Output voltage spectrum for natural sampling. Dasheeklshow the theoretical spectrum; solid lines (slightgpliced
for clarity) show results from simulation in Matlab. Leffy = 0. Right: Ty/Ts = 0.04 andd = 1. The frequency of a given
contribution is ‘harmonic ordes w.
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FiG. 5. Output voltage spectrum for asymmetrical regular samgplDashed lines show the theoretical spectrum; solicsline
(slightly displaced for clarity) show results from simutet in Matlab. Left: Ty = 0. Right: Tq/Ts = 0.04 andd = 1. The
frequency of a given contribution is ‘harmonic ordert,.
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FIG. 6. Output voltage spectrum for symmetrical regular samgpliDashed lines show the theoretical spectrum; solid lines
(slightly displaced for clarity) show results from simutet in Matlab. Left: Ty = 0. Right: Ty/Ts = 0.04 andd = 1. The
frequency of a given contribution is ‘harmonic orderty,.

6. Discussion and conclusions

This paper has presented closed-form expressions for gwrdtical spectrum of the output voltage
of a PWM inverter, allowing for two implementations of de&ue, for the first time. Prior attempts
to calculate the effects of dead time on this spectrum haledren approximations or restrictions
which are not necessary here. Our analysis reveals the ncfuef dead time upon the amplitudes
of the low-order harmonics. For natural sampling, we find the relationship between the dead-
time ratio and the amplitudes of these components is lin€ar. regular sampling, the situation is
similar, although the relationship is then only approxiehatinear, provided the ratiox/ws is held
fixed. For natural sampling and for asymmetrical regularpgarg, we have identified those frequency
components which are absent from the spectrum (these assane independent of the form of the
dead-time implementation).

We have corroborated our analytical results by means ofdlatimulations of the output voltage
waveform. There is excellent agreement between theoryiemdation for the two dead-time protocols
discussed here, and for both natural and regular sampling.

One reason that dead-time effects have not previously hdbnaihalysed lies in the tremendous
algebraic complexity of the necessary calculations udiegindustry standard’ method, due to Black
(1953). We therefore emphasise that the method descrilveddithough itself algebraically involved, is
less cumbersome than Black’s method, and does make fe#fs#diead-time calculation. Furthermore,
it may readily be extended to allow for a multiple-frequeneference signal (cf. Odavit al, 2010),
although, of course, the corresponding algebra would befgigntly more involved. In a similar vein,
we note that this method could be extended to more compligai®er converter designs, for which the
single-phase inverter presented here is the fundameritdingublock.

Finally, we note that in a practical implementation the $pen may differ from the ideal case
described here. For instance, with dead time the switclirdetermined by thanstantaneousrather
thansampledvalue of the current. It is therefore to be expected thaasiomal additional pulses may
arise in the output voltage around the time at which the etickanges polarity, modifying slightly the
output voltage spectrum. While this effect is likely to bigist, its significance will increase as the ratio
o/ ws increases; an analysis of this effect is beyond the scogdeegiesent paper.
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