63 research outputs found

    Treatment-resistant depression and peripheral C-reactive protein.

    Get PDF
    BACKGROUND: C-reactive protein (CRP) is a candidate biomarker for major depressive disorder (MDD), but it is unclear how peripheral CRP levels relate to the heterogeneous clinical phenotypes of the disorder.AimTo explore CRP in MDD and its phenotypic associations. METHOD: We recruited 102 treatment-resistant patients with MDD currently experiencing depression, 48 treatment-responsive patients with MDD not currently experiencing depression, 48 patients with depression who were not receiving medication and 54 healthy volunteers. High-sensitivity CRP in peripheral venous blood, body mass index (BMI) and questionnaire assessments of depression, anxiety and childhood trauma were measured. Group differences in CRP were estimated, and partial least squares (PLS) analysis explored the relationships between CRP and specific clinical phenotypes. RESULTS: Compared with healthy volunteers, BMI-corrected CRP was significantly elevated in the treatment-resistant group (P = 0.007; Cohen's d = 0.47); but not significantly so in the treatment-responsive (d = 0.29) and untreated (d = 0.18) groups. PLS yielded an optimal two-factor solution that accounted for 34.7% of variation in clinical measures and for 36.0% of variation in CRP. Clinical phenotypes most strongly associated with CRP and heavily weighted on the first PLS component were vegetative depressive symptoms, BMI, state anxiety and feeling unloved as a child or wishing for a different childhood. CONCLUSIONS: CRP was elevated in patients with MDD, and more so in treatment-resistant patients. Other phenotypes associated with elevated CRP included childhood adversity and specific depressive and anxious symptoms. We suggest that patients with MDD stratified for proinflammatory biomarkers, like CRP, have a distinctive clinical profile that might be responsive to second-line treatment with anti-inflammatory drugs.Declaration of interestS.R.C. consults for Cambridge Cognition and Shire; and his input in this project was funded by a Wellcome Trust Clinical Fellowship (110049/Z/15/Z). E.T.B. is employed half time by the University of Cambridge and half time by GlaxoSmithKline; he holds stock in GlaxoSmithKline. In the past 3 years, P.J.C. has served on an advisory board for Lundbeck. N.A.H. consults for GlaxoSmithKline. P.d.B., D.N.C.J. and W.C.D. are employees of Janssen Research & Development, LLC., of Johnson & Johnson, and hold stock in Johnson & Johnson. The other authors report no financial disclosures or potential conflicts of interest.This work was funded by a Wellcome Trust strategy award to the Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium which is also funded by Janssen, GlaxoSmithKline, Lundbeck and Pfizer. Recruitment of patients was supported by the National Institute of Health Research (NIHR) Clinical Research Network: Kent, Surrey and Sussex & Eastern. SRC consults for Cambridge Cognition and Shire; and his input in this project was funded by a Wellcome Trust Clinical Fellowship (110049/Z/15/Z). ETB is employed half-time by the University of Cambridge and half-time by GlaxoSmithKline; he holds stock in GSK. In the last three years PJC has served on an advisory board for Lundbeck. NAH consults for GSK. PdB, DJ and WCD are employees of Janssen Research & Development, LLC., of Johnson & Johnson, and hold stock in Johnson & Johnson

    Peripheral Blood Cell-Stratified Subgroups of Inflamed Depression.

    Get PDF
    BACKGROUND: Depression has been associated with increased inflammatory proteins, but changes in circulating immune cells are less well defined. METHODS: We used multiparametric flow cytometry to count 14 subsets of peripheral blood cells in 206 depression cases and 77 age- and sex-matched controls (N = 283). We used univariate and multivariate analyses to investigate the immunophenotypes associated with depression and depression severity. RESULTS: Depression cases, compared with controls, had significantly increased immune cell counts, especially neutrophils, CD4+ T cells, and monocytes, and increased inflammatory proteins (C-reactive protein and interleukin-6). Within-group analysis of cases demonstrated significant associations between the severity of depressive symptoms and increased myeloid and CD4+ T-cell counts. Depression cases were partitioned into 2 subgroups by forced binary clustering of cell counts: the inflamed depression subgroup (n = 81 out of 206; 39%) had increased monocyte, CD4+, and neutrophil counts; increased C-reactive protein and interleukin-6; and more severe depression than the uninflamed majority of cases. Relaxing the presumption of a binary classification, data-driven analysis identified 4 subgroups of depression cases, 2 of which (n = 38 and n = 100; 67% collectively) were associated with increased inflammatory proteins and more severe depression but differed in terms of myeloid and lymphoid cell counts. Results were robust to potentially confounding effects of age, sex, body mass index, recent infection, and tobacco use. CONCLUSIONS: Peripheral immune cell counts were used to distinguish inflamed and uninflamed subgroups of depression and to indicate that there may be mechanistically distinct subgroups of inflamed depression.This work was supported by the Wellcome Trust [104025]. M Lynall was supported by a fellowship and grant from Addenbrooke’s Charitable Trust, Cambridge and a fellowship from the Medical Research Council (MR/S006257/1). M. R. Clatworthy is supported by the NIHR Cambridge Biomedical Research Centre (Transplant and Regenerative Medicine), NIHR Blood and Transplant Research Unit, MRC New Investigator Research Grant, MR/N024907/1; Arthritis Research UK Cure Challenge Research Grant, 21777), and an NIHR Research Professorship (RP-2017-08-ST2-002). E. T. Bullmore and C. M. Pariante are each supported by a NIHR Senior Investigator award. This work was also supported by the NIHR Cambridge Biomedical Research Centre (Mental Health) and the Cambridge NIHR BRC Cell Phenotyping Hub, as well as the NIHR BRC at the South London and Maudsley NHS Foundation Trust and King's College London, London

    Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design

    Get PDF
    Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite

    Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms

    Get PDF
    KT acknowledges receipt of a mandate of Industrial Research Fund (IOFm/05/022). JB acknowledges funding from the European Research Council Advanced Award 3400867/RAPLODAPT and the Israel Science Foundation grant # 314/13 (www.isf.il). NG acknowledges the Wellcome Trust and MRC for funding. CD acknowledges funding from the Agence Nationale de Recherche (ANR-10-LABX-62-IBEID). CJN acknowledges funding from the National Institutes of Health R35GM124594 and R21AI125801. AW is supported by the Wellcome Trust Strategic Award (grant 097377), the MRC Centre for Medical Mycology (grant MR/N006364/1) at the University of Aberdeen MaCA: outside this study MaCA has received personal speaker’s honoraria the past five years from Astellas, Basilea, Gilead, MSD, Pfizer, T2Candida, and Novartis. She has received research grants and contract work paid to the Statens Serum Institute from Astellas, Basilea, Gilead, MSD, NovaBiotics, Pfizer, T2Biosystems, F2G, Cidara, and Amplyx. CAM acknowledges the Wellcome Trust and the MRC MR/N006364/1. PVD, TC and KT acknowledge the FWO research community: Biology and ecology of bacterial and fungal biofilms in humans (FWO WO.009.16N). AAB acknowledges the Deutsche Forschungsgemeinschaft – CRC FungiNet.Peer reviewedPublisher PD

    Disturbed sex hormone milieu in males and females with major depressive disorder and low-grade inflammation

    Get PDF
    Sex hormones have biological effects on inflammation, and these might contribute to the sex-specific features of depression. C-reactive protein (CRP) is the most widely used inflammatory biomarker and consistent evidence shows a significant proportion (20–30 %) of patients with major depressive disorder (MDD) have CRP levels above 3 mg/L, a threshold indicating at least low-grade inflammation. Here, we investigate the interplay between sex hormones and CRP in the cross-sectional, observational Biomarkers in Depression Study. We measured serum high-sensitivity (hs-)CRP, in 64 healthy controls and 178 MDD patients, subdivided into those with hs-CRP below 3 mg/L (low-CRP; 53 males, 72 females) and with hs-CRP above 3 mg/L (high-CRP; 19 males, 34 females). We also measured interleukin-6, testosterone, 17-β-estradiol (E2), progesterone, sex-hormone binding globulin (SHBG), follicle-stimulating and luteinising hormones, and calculated testosterone-to-E2 ratio (T/E2), free androgen and estradiol indexes (FAI, FEI), and testosterone secretion index. In males, high-CRP patients had lower testosterone than controls (p = 0.001), and lower testosterone (p = 0.013), T/E2 (p < 0.001), and higher FEI (p = 0.015) than low-CRP patients. In females, high-CRP patients showed lower SHGB levels than controls (p = 0.033) and low-CRP patients (p = 0.034). The differences in testosterone, T/E2 ratio, and FEI levels in males survived the Benjamini-Hochberg FDR correction. In linear regression analyses, testosterone (β = −1.069 p = 0.033) predicted CRP concentrations (R2 = 0.252 p = 0.002) in male patients, and SHBG predicted CRP levels (β = −0.628 p = 0.009, R2 = 0.172 p = 0.003) in female patients. These findings may guide future research investigating interactions between gonadal and immune systems in depression, and the potential of hormonal therapies in MDD with inflammation

    Diazoxide choline extended‐release tablet in people with Prader‐Willi syndrome: results from long‐term open‐label study

    Get PDF
    Objective: This study assessed the effect of 1-year administration of diazoxide choline extended-release tablet (DCCR) on hyperphagia and other complications of Prader-Willi syndrome (PWS). Methods: The authors studied 125 participants with PWS, age ≥ 4 years, who were enrolled in the DESTINY PWS Phase 3 study and who received DCCR for up to 52 weeks in DESTINY PWS and/or its open-label extension. The primary efficacy endpoint was Hyperphagia Questionnaire for Clinical Trials (HQ-CT) score. Other endpoints included behavioral assessments, body composition, hormonal measures, and safety. Results: DCCR administration resulted in significant improvements in HQ-CT (mean [SE] −9.9 [0.77], p &lt; 0.0001) and greater improvements in those with more severe baseline hyperphagia (HQ-CT &gt; 22). Improvements were seen in aggression, anxiety, and compulsivity (all p &lt; 0.0001). There were reductions in leptin, insulin, and insulin resistance, as well as a significant increase in adiponectin (all p &lt; 0.004). Lean body mass was increased (p &lt; 0.0001). Disease severity was reduced as assessed by clinician and caregiver (both p &lt; 0.0001). Common treatment-emergent adverse events included hypertrichosis, peripheral edema, and hyperglycemia. Adverse events infrequently resulted in discontinuation (7.2%). Conclusions: DCCR administration to people with PWS was well tolerated and associated with broad-ranging improvements in the syndrome. Sustained administration of DCCR has the potential to reduce disease severity and the burden of care for families

    Australian utility weights for the EORTC QLU-C10D, a multi-attribute utility instrument derived from the cancer-specific quality of life questionnaire, EORTC QLQ-C30

    Get PDF
    Background: The EORTC QLU-C10D is a new multi-attribute utility instrument derived from the widely-used cancer-specific quality of life questionnaire, EORTC QLQ-C30. The QLU-C10D contains ten dimensions (Physical, Role, Social and Emotional Functioning; Pain, Fatigue, Sleep, Appetite, Nausea, Bowel Problems), each with 4 levels. To be used in cost-utility analysis, country-specific valuation sets are required. Objective: To provide Australian utility weights for the QLU-C10D. Methods: An Australian online panel was quota sampled to ensure population representativeness by sex and age (≥18y). Participants completed a discrete choice experiment (DCE) consisting of 16 choice-pairs. Each pair comprised two QLU-C10D health states plus life expectancy. Data were analysed using conditional logistic regression, parameterised to fit the quality-adjusted life-year framework. Utility weights were calculated as the ratio of each QOL dimension-level coefficient to the coefficient on life expectancy. Results: 1979 panel members opted-in, 1904 (96%) completed at least one choice-pair, and 1846 (93%) completed all 16 choice-pairs. Dimension weights were generally monotonic: poorer levels within each dimension were generally associated with greater utility decrements. The dimensions that impacted most on choice were, in order, Physical Functioning, Pain, Role Functioning and Emotional Functioning. Oncology-relevant dimensions with moderate impact were Nausea and Bowel Problems. Fatigue, Trouble Sleeping and Appetite had relatively small impact. The value of the worst health state was -0.096, somewhat worse than death. Conclusions: This study provides the first country-specific value set for the QLU-C10D, which can facilitate cost-utility analyses when applied to data collected with the EORTC QLQ-C30, prospectively and retrospectively

    Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study

    Get PDF
    Funder: DH | National Institute for Health Research (NIHR); doi: https://doi.org/10.13039/501100000272Abstract: The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications
    corecore