998 research outputs found

    Resistance to fatigue of self-healed concrete based on encapsulated polymer precursors

    Get PDF
    Moving cracks are often present in concrete structures and in those circumstances any self-healing technique for concrete must satisfy specific performance requirements, to guarantee its increased durability. These requirements include the capability of withstanding multiple cycles of crack movement without failing to keep healed cracks sealed. This paper shows early results from a testing protocol suggested by the authors to assess the performance of polymers as healing materials for moving cracks. Ultrasound (US) shear waves were used for continuous monitoring of small prismatic mortar specimens containing a single healed crack under a cyclic load. The maximum amplitude of US waves transmitted across healed cracks was correlated to the area effectively healed and the magnitude of crack movement. A decreasing trend of the maximum amplitude during cyclic loading was observed for strain levels on the polymer corresponding to 70% of its strain limit, but soundness at lower strain levels was confirmed after 300 cycles

    A linear temporal logic model checking method over finite words with correlated transition attributes

    Get PDF
    Temporal logic model checking techniques are applied, in a natural way, to the analysis of the set of finite traces composing a system log. The specific nature of such traces helps in adapting traditional techniques in order to extend their analysis capabilities. The paper presents an adaption of the classical Timed Propositional Temporal Logic to the case of finite words and considers relations among different attributes corresponding to different events. The introduced approach allows the use of general relations between event attributes by means of freeze quantifiers as well as future and past temporal operators. The paper also presents a decision procedure, as well as a study of its computational complexity

    A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach

    Get PDF
    Many hydrological models including root water uptake (RWU) do not consider the dimension of root system hydraulic architecture (HA) because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation) and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution <b><i>SSF</i></b>, the root system equivalent conductance <i>K</i><sub>rs</sub> and the compensatory RWU conductance <i>K</i><sub>comp</sub>. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation

    Thermal annealing study of swift heavy-ion irradiated zirconia

    Get PDF
    Sintered samples of monoclinic zirconia (alpha-ZrO2) have been irradiated at room temperature with 6.0-GeV Pb ions in the electronic slowing down regime. X-ray diffraction (XRD) and micro-Raman spectroscopy measurements showed unambiguously that a transition to the 'metastable' tetragonal phase (beta-ZrO2) occurred at a fluence of 6.5x10^12 cm-2 for a large electronic stopping power value (approx 32.5 MeV ÎĽ\mum-1). At a lower fluence of 1.0x10^12 cm-2, no such phase transformation was detected. The back-transformation from beta- to alpha-ZrO2 induced by isothermal or isochronal thermal annealing was followed by XRD analysis. The back-transformation started at an onset temperature around 500 K and was completed by 973 K. Plots of the residual tetragonal phase fraction deduced from XRD measurements versus annealing temperature or time are analyzed with first- or second-order kinetic models. An activation energy close to 1 eV for the back-transformation process is derived either from isothermal annealing curves, using the so-called "cross-cut" method, or from the isochronal annealing curve, using a second-order kinetic law. Correlation with the thermal recovery of ion-induced paramagnetic centers monitored by EPR spectroscopy is discussed. Effects of crystallite size evolution and oxygen migration upon annealing are also addressed

    A note on the minimum distance of quantum LDPC codes

    Full text link
    We provide a new lower bound on the minimum distance of a family of quantum LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and Shokrollahi. Our bound is exponential, improving on the quadratic bound of Couvreur, Delfosse and Z\'emor. This result is obtained by examining a family of subsets of the hypercube which locally satisfy some parity conditions

    Hierarchical Set Decision Diagrams and Regular Models

    Get PDF
    This paper presents algorithms and data structures that exploit a compositional and hierarchical specification to enable more efficient symbolic model-checking. We encode the state space and transition relation using hierarchical Set Decision Diagrams (SDD) [9]. In SDD, arcs of the structure are labeled with sets, themselves stored as SDD. To exploit the hierarchy of SDD, a structured model representation is needed. We thus introduce a formalism integrating a simple notion of type and instance. Complex composite behaviors are obtained using a synchronization mechanism borrowed from process calculi. Using this relatively general framework, we investigate how to capture similarities in regular and concurrent models. Experimental results are presented, showing that this approach can outperform in time and memory previous work in this area

    The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL

    Get PDF
    We report the detection of both the 67.9 and 78.4 keV 44Sc gamma-ray lines in Cassiopeia A with the INTEGRAL IBIS/ISGRI instrument. Besides the robustness provided by spectro-imaging observations, the main improvements compared to previous measurements are a clear separation of the two 44Sc lines together with an improved significance of the detection of the hard X-ray continuum up to 100 keV. These allow us to refine the determination of the 44Ti yield and to constrain the nature of the nonthermal continuum emission. By combining COMPTEL, BeppoSAX/PDS and ISGRI measurements, we find a line flux of (2.5 +/- 0.3)*10(-5) cm(-2) s(-1) leading to a synthesized 44Ti mass of 1.6 (+0.6-0.3)*10(-4) solar mass. This high value suggests that Cas A is peculiar in comparison to other young supernova remnants, from which so far no line emission from 44Ti decay has been unambiguously detected.Comment: 5 pages, 4 figures, Accepted for publication in ApJ

    Efficient Emptiness Check for Timed B\"uchi Automata (Extended version)

    Full text link
    The B\"uchi non-emptiness problem for timed automata refers to deciding if a given automaton has an infinite non-Zeno run satisfying the B\"uchi accepting condition. The standard solution to this problem involves adding an auxiliary clock to take care of the non-Zenoness. In this paper, it is shown that this simple transformation may sometimes result in an exponential blowup. A construction avoiding this blowup is proposed. It is also shown that in many cases, non-Zenoness can be ascertained without extra construction. An on-the-fly algorithm for the non-emptiness problem, using non-Zenoness construction only when required, is proposed. Experiments carried out with a prototype implementation of the algorithm are reported.Comment: Published in the Special Issue on Computer Aided Verification - CAV 2010; Formal Methods in System Design, 201

    Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size

    Get PDF
    Atlantic cod (Gadus morhua) is among the most important commercial fish species on the world market. Its infection by ascaridoid nematodes has long been known, Pseudoterranova even being named cod worm. In the present study, 755 individuals were sampled in the Barents, Baltic and North Seas during 2012–2014. Prevalences for Anisakis in whole fish and in fillets in the different fishing areas varied from 16 to 100% and from 12 to 90% respectively. Abundance was also greatly influenced by the sampling area. Generalized additive model results indicate higher numbers of Anisakis in the North Sea, even after the larger body size was accounted for. Numbers and prevalence of Anisakis were positively related to fish length or weight. The prevalence of parasites in whole fish and in fillets was also influenced by the season, with the spring displaying a peak for the prevalence in whole fish and, at the same time, a drop for the prevalence in fillets. Whereas 46% of cod had Anisakis larvae in their fillets, the majority (39%) had parasites mainly in the ventral part of the fillet and only 12% had parasites in their dorsal part. This observation is of importance for the processing of the fish. Indeed, the trimming of the ventral part of the cod fillet would allow the almost total elimination of ascaridoids except for cod from the Baltic Sea where there was no difference between the dorsal and the ventral part. The presence of other ascaridoid genera was also noticeable in some areas. For Pseudoterranova, the highest prevalence (45%) in whole fish was observed in the Northern North Sea, whereas the other areas had prevalences between 3 and 16%. Contracaecum was present in every commercial size cod sampled in the Baltic Sea with an intensity of up to 96 worms but no Contracaecum was isolated from the Central North Sea. Non-zoonotic Hysterothylacium was absent from the Baltic Sea but with a prevalence of 83% in the Barents and the Northern North Sea. A subsample of worms was identified with genetic-molecular tools and assigned to the species A. simplex (s.s.), A. pegreffii, P. decipiens (s.s.), P. krabbei, C. osculatum and H. aduncum. In addition to high prevalence and abundance values, the cod sampled in this study presented a diversity of ascaridoid nematodes with a majority of fish displaying a co-infection. Out of 295 whole infected fish, 269 were co-infected by at least 2 genera

    Little ecological divergence associated with speciation in two African rain forest tree genera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tropical rain forests (TRF) of Africa are the second largest block of this biome after the Amazon and exhibit high levels of plant endemism and diversity. Two main hypotheses have been advanced to explain speciation processes that have led to this high level of biodiversity: allopatric speciation linked to geographic isolation and ecological speciation linked to ecological gradients. Both these hypotheses rely on ecology: in the former conservation of ecological niches through time is implied, while in the latter adaptation via selection to alternative ecological niches would be a prerequisite. Here, we investigate the role of ecology in explaining present day species diversity in African TRF using a species level phylogeny and ecological niche modeling of two predominantly restricted TRF tree genera, <it>Isolona </it>and <it>Monodora </it>(Annonaceae). Both these genera, with 20 and 14 species, respectively, are widely distributed in African TRFs, with a few species occurring in slightly less humid regions such as in East Africa.</p> <p>Results</p> <p>A total of 11 sister species pairs were identified most of them occurring in allopatry or with little geographical overlap. Our results provide a mixed answer on the role of ecology in speciation. Although no sister species have identical niches, just under half of the tests suggest that sister species do have more similar niches than expected by chance. PCA analyses also support little ecological differences between sister species. Most speciation events within both genera predate the Pleistocene, occurring during the Late Miocene and Pliocene periods.</p> <p>Conclusions</p> <p>Ecology is almost always involved in speciation, however, it would seem to have had a little role in species generation within <it>Isolona </it>and <it>Monodora </it>at the scale analyzed here. This is consistent with the geographical speciation model for TRF diversification. These results contrast to other studies for non-TRF plant species where ecological speciation was found to be an important factor of diversification. The Pliocene period appears to be a vital time in the generation of African TRF diversity, whereas Pleistocene climatic fluctuations have had a smaller role on speciation than previously thought.</p> <p>Ecological niche modeling, species level phylogeny, ecological speciation, African tropics, <it>Isolona</it>, <it>Monodora</it>, Annonaceae</p
    • …
    corecore