2,649 research outputs found

    Star Formation in Nearby Isolated Galaxies

    Full text link
    We use the FUV fluxes measured with the GALEX to study the star formation properties of galaxies collected in the "Local Orphan Galaxies" catalog (LOG). Among 517 LOG galaxies having radial velocities V(LG) < 3500 km/s and Galactic latitudes |b|> 15 degr, 428 objects have been detected in FUV. We briefly discuss some scaling relations between the specific star formation rate (SSFR) and stellar mass, HI-mass, morphology, and surface brightness of galaxies situated in extremely low density regions of the Local Supercluster. Our sample is populated with predominantly late-type, gas-rich objects with the median morphological type of Sdm. Only 5% of LOG galaxies are classified as early types: E, S0, S0/a, however, they systematically differ from normal E and S0 galaxies by lower luminosity and presence of gas and dust. We find that almost all galaxies in our sample have their SSFR below 0.4 [Gyr^{-1}]. This limit is also true even for a sample of 260 active star-burst Markarian galaxies situated in the same volume. The existence of such a quasi-Eddington limit for galaxies seems to be a key factor which characterizes the transformation of gas into stars at the current epoch.Comment: 10 pages, 8 figures, 3 table

    Circuit approach to photonic heat transport

    Full text link
    We discuss the heat transfer by photons between two metals coupled by a linear element with a reactive impedance. Using a simple circuit approach, we calculate the spectral power transmitted from one resistor to the other and find that it is determined by the photon transmission coefficient, which depends on the impedances of the metals and the coupling element. We study the total photonic power flow for different coupling impedances, both in the linear regime, where the temperature difference between the metals is small, and in the non-linear regime of large temperature differences.Comment: 6 pages, 6 figure

    On the absence of Shapiro-like steps in certain mesoscopic S-N-S junctions

    Full text link
    In DC transport through mesoscopic S-N-S junctions, it is known that the Josephson coupling decreases exponentially with increasing temperature, but the phase dependence of the conductance persists to much higher temperatures and decreases only as 1/T. It is pointed out here that, despite the fact that such a phase-dependent conductance does bring about an AC current for a pure DC voltage, it cannot, by itself, lead to the formation of Shapiro steps.Comment: 1 page, to be published in PRL (as Comment

    From Spitzer Galaxy Photometry to Tully-Fisher Distances

    Get PDF
    This paper involves a data release of the observational campaign: Cosmicflows with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the survey is presented. An additional ~ 400 galaxies from various other Spitzer surveys are also analyzed. CFS complements the Spitzer Survey of Stellar Structure in Galaxies, that provides photometry for an additional 2352 galaxies, by extending observations to low galactic latitudes (|b|<30 degrees). Among these galaxies are calibrators, selected in K band, of the Tully-Fisher relation. The addition of new calibrators demonstrate the robustness of the previously released calibration. Our estimate of the Hubble constant using supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc. Distance-derived radial peculiar velocities, for the 1935 galaxies with all the available parameters, will be incorporated into a new data release of the Cosmicflows project. The size of the previous catalog will be increased by 20%, including spatial regions close to the Zone of Avoidance.Comment: Accepted for publication in MNRAS, 16 pages, 14 figures, 6 table

    Absence of boron aggregates in superconducting silicon confirmed by atom probe tomography

    Full text link
    Superconducting boron-doped silicon films prepared by gas immersion laser doping (GILD) technique are analyzed by atom probe tomography. The resulting three-dimensional chemical composition reveals that boron atoms are incorporated into crystalline silicon in the atomic percent concentration range, well above their solubility limit, without creating clusters or precipitates at the atomic scale. The boron spatial distribution is found to be compatible with local density of states measurements performed by scanning tunneling spectroscopy. These results, combined with the observations of very low impurity level and of a sharp two-dimensional interface between doped and undoped regions show, that the Si:B material obtained by GILD is a well-defined random substitutional alloy endowed with promising superconducting properties.Comment: 4 page

    Divergence at low bias and down-mixing of the current noise in a diffusive superconductor-normal metal-superconductor junction

    Get PDF
    We present current noise measurements in a long diffusive superconductor-normal-metal-superconductor junction in the low voltage regime, in which transport can be partially described in terms of coherent multiple Andreev reflections. We show that, when decreasing voltage, the current noise exhibits a strong divergence together with a broad peak. We ascribe this peak to the mixing between the ac- Josephson current and the noise of the junction itself. We show that the junction noise corresponds to the thermal noise of a nonlinear resistor 4kBT=R with R V = I V and no adjustable parameters

    Subkelvin tunneling spectroscopy showing Bardeen-Cooper-Schrieffer superconductivity in heavily boron-doped silicon epilayers

    Full text link
    Scanning tunneling spectroscopies in the subKelvin temperature range were performed on superconducting Silicon epilayers doped with Boron in the atomic percent range. The resulting local differential conductance behaved as expected for a homogeneous superconductor, with an energy gap dispersion below +/- 10%. The spectral shape, the amplitude and temperature dependence of the superconductivity gap follow the BCS model, bringing further support to the hypothesis of a hole pairing mechanism mediated by phonons in the weak coupling limit.Comment: 4 pages, 3 figure
    corecore