108 research outputs found
Stationary shapes of deformable particles moving at low Reynolds numbers
Lecture Notes of the Summer School ``Microswimmers -- From Single Particle
Motion to Collective Behaviour'', organised by the DFG Priority Programme SPP
1726 (Forschungszentrum J{\"{u}}lich, 2015).Comment: Pages C7.1-16 of G. Gompper et al. (ed.), Microswimmers - From Single
Particle Motion to Collective Behaviour, Lecture Notes of the DFG SPP 1726
Summer School 2015, Forschungszentrum J\"ulich GmbH, Schriften des
Forschungszentrums J\"ulich, Reihe Key Technologies, Vol 110, ISBN
978-3-95806-083-
Noninferiority of Preservative-free Versus BAK-preserved Latanoprost-timolol Fixed Combination Eye Drops in Patients With Open-angle Glaucoma or Ocular Hypertension
Précis: Noninferiority of efficacy was demonstrated for a preservative-free latanoprost-timolol fixed combination compared with a BAK-containing formulation at 84 days after treatment in patients with open-angle glaucoma or ocular hypertension.
Purpose: The purpose of this study was to compare the effect on intraocular pressure and safety of preservative-free latanoprost-timolol fixed combination (T2347) to benzalkonium chloride-preserved latanoprost-timolol fixed combination in patients with open-angle glaucoma or ocular hypertension.
Methods: Phase III, randomized, parallel-group, investigator-masked study in 10 countries. A total of 242 patients aged 18 years or older with open-angle glaucoma or ocular hypertension in both eyes controlled with a preserved latanoprost-timolol fixed combination (15.7±2.4 mm Hg overall before inclusion) were randomized at day 0 with no washout period to receive the preservative-free alternative T2347 (N=127) or remain on the preserved comparator (N=115) for 84 days. Intraocular pressure changes from day 0 were measured at 9:00 am (±1 hour) on day 42 and day 84, and noninferiority of T2347 to the preserved comparator was analyzed statistically at day 84. Safety parameters were also reported.
Results: The mean change in intraocular pressure from baseline to day 84 was -0.49±1.80 mm Hg for preservative-free T2347 and -0.49±2.25 mm Hg for the preserved comparator. These results met the noninferiority limits. Similar results were observed at day 42. There was no difference between groups in the incidence of adverse events or ocular signs. The total ocular symptoms score was better for T2347 than BPLT upon instillation at day 84 (45.9%/44.3%/9.8% of patients with improvement/no change/worsening vs. 33.6%/47.3%/19.1%; P=0.021), reflecting improvements in individual symptoms such as irritation/burning/stinging (P<0.001), and itching (P<0.01) on day 84.
Conclusions: Preservative-free latanoprost-timolol fixed combination T2347 showed noninferior efficacy compared with the preserved comparator and was well tolerated
The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers
Background: The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance. Methods: To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework. Results: No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association. Conclusion: There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers. O M Sinilnikova1,2, A C Antoniou3, J Simard4, S Healey5, M Léoné1, D Sinnett6,7, A B Spurdle5, J Beesley5, X Chen5, kConFab8, M H Greene9, J T Loud9, F Lejbkowicz10, G Rennert10, S Dishon10, I L Andrulis11,12, OCGN11, S M Domchek13, K L Nathanson13, S Manoukian14, P Radice15,16, I Konstantopoulou17, I Blanco18, A L Laborde19, M Durán20, A Osorio21, J Benitez21, U Hamann22, F B L Hogervorst23, T A M van Os24, H J P Gille25, HEBON23, S Peock3, M Cook3, C Luccarini26, D G Evans27, F Lalloo27, R Eeles28, G Pichert29, R Davidson30, T Cole31, J Cook32, J Paterson33, C Brewer34, EMBRACE3, D J Hughes35, I Coupier36,37, S Giraud1, F Coulet38, C Colas38, F Soubrier38, E Rouleau39, I Bièche39, R Lidereau39, L Demange40, C Nogues40, H T Lynch41, GEMO1,2,42, R K Schmutzler43, B Versmold43, C Engel44, A Meindl45, N Arnold46, C Sutter47, H Deissler48, D Schaefer49, U G Froster50, GC-HBOC43,44,45,46,47,48,49,50, K Aittomäki51, H Nevanlinna52, L McGuffog3, D F Easton3, G Chenevix-Trench5 and D Stoppa-Lyonnet42 on behalf of the Consortium of Investigators of Modifiers of BRCA1/
DNA repair capacity as a possible biomarker of breast cancer risk in female BRCA1 mutation carriers
The BRCA1 gene product helps to maintain genomic integrity through its participation in the cellular response to DNA damage: specifically, the repair of double-stranded DNA breaks. An impaired cellular response to DNA damage is a plausible mechanism whereby BRCA1 mutation carriers are at increased risk of breast cancer. Hence, an individual's capacity to repair DNA may serve as a useful biomarker of breast cancer risk. The overall aim of the current study was to identify a biomarker of DNA repair capacity that could distinguish between BRCA1 mutation carriers and non-carriers. DNA repair capacity was assessed using three validated assays: the single-cell alkaline gel electrophoresis (comet) assay, the micronucleus test, and the enumeration of γ-H2AX nuclear foci. DNA repair capacity of peripheral blood lymphocytes from 25 cancer-free female heterozygous BRCA1 mutation carriers and 25 non-carrier controls was assessed at baseline and following cell exposure to γ – irradiation (2 Gy). We found no significant differences in the mean tail moment, in the number of micronuclei or in the number of γ-H2AX nuclear foci between the carriers and non-carriers at baseline, and following γ-irradiation. These data suggest that these assays are not likely to be useful in the identification of women at a high risk for breast cancer
The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations
International audienceBACKGROUND:Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers.METHODS:Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort.RESULTS:For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] = 0.99, 95% confidence interval [CI] = 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc = 0.79, 95% CI = 0.69 to 0.91; HRc = 0.70, 95% CI = 0.59 to 0.82; HRc = 0.50, 95% CI = 0.40 to 0.63, for 2, 3, and ≥4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trend = .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] = 1.69, 95% CI = 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc = 1.33, 95% CI = 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc = 0.72, 95% CI = 0.54 to 0.98).CONCLUSIONS:These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM (-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
- …