25 research outputs found

    Drug-Induced Liver Injury due to Flucloxacillin:Relevance of Multiple Human Leukocyte Antigen Alleles

    Get PDF
    © 2019 The Authors Clinical Pharmacology & Therapeutics © 2019 American Society for Clinical Pharmacology and Therapeutics Some patients prescribed flucloxacillin (~0.01%) develop drug-induced liver injury (DILI). HLA-B*57:01 is an established genetic risk factor for flucloxacillin DILI. To consolidate this finding, identify additional genetic factors, and assess relevance of risk factors for flucloxacillin DILI in relation to DILI due to other penicillins, we performed a genomewide association study involving 197 flucloxacillin DILI cases and 6,835 controls. We imputed single-nucleotide polymorphism and human leukocyte antigen (HLA) genotypes. HLA-B*57:01 was the major risk factor (allelic odds ratio (OR)=36.62; P=2.67×10−97). HLA-B*57:03 also showed an association (OR=79.21; P=1.2×10−6). Within the HLA-B protein sequence, imputation showed valine97, common to HLA-B*57:01 and HLA-B*57:03, had the largest effect (OR=38.1; P=9.7×10−97). We found no HLA-B*57 association with DILI due to other isoxazolyl penicillins (n=6) or amoxicillin (n=15) and no significant non-HLA signals for any penicillin-related DILI

    Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting

    Get PDF
    This manuscript provides nomenclature recommendations developed by an international workgroup to increase transparency and standardization of pharmacogenetic (PGx) result reporting. Presently, sequence variants identified by PGx tests are described using different nomenclature systems. In addition, PGx analysis may detect different sets of variants for each gene, which can affect interpretation of results. This practice has caused confusion and may thereby impede the adoption of clinical PGx testing. Standardization is critical to move PGx forward

    Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study

    Get PDF
    BACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for drug-induced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A*33:01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9-3.8; P = 2.4 × 10-8) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6-2.5; P = 9.7 × 10-9). The association with A*33:01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A*33:01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6-2.7; P = 4.8 × 10-9). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0-9.5; P = 7.1 × 10-9). We validated the association between A*33:01 terbinafine- and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A*33:01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors

    Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study

    Get PDF
    BACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for druginduced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A* 33: 01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9 - 3.8; P = 2.4 x 10(-8)) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6 - 2.5; P = 9.7 x 10(-9)). The association with A* 33: 01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A* 33: 01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6 - 2.7; P = 4.8 x 10(-9)). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0 - 9.5; P = 7.1 x 10(-9)). We validated the association between A* 33: 01 terbinafine-and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A* 33: 01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors.Peer reviewe

    The Role of Inosine-5'-Monophosphate Dehydrogenase in Thiopurine Metabolism in Patients With Inflammatory Bowel Disease.

    No full text
    BACKGROUND:: There is a large interindividual variability in thiopurine metabolism. High concentrations of methylthioinosine-5'-monophosphate (meTIMP) and low concentrations of 6-thioguanine nucleotides (6-TGNs) have been associated with a lower response rate and an increased risk of adverse events. In this study, the role of inosine-5'-monophosphate dehydrogenase (IMPDH) for differences in metabolite patterns of thiopurines was investigated. METHODS:: IMPDH activity and thiopurine metabolite concentrations were determined in patients with inflammatory bowel disease and a normal thiopurine methyltransferase (TPMT) phenotype and meTIMP/6-TGN concentration ratio > 20 (n = 26), in patients with a metabolite ratio ≀20 (n = 21), in a subgroup with a metabolite ratio 20 had lower IMPDH activity than those with ratios ≀20 (P 20 were only observed in patients with normal TPMT activity. Downregulation of IMPDH activity in HEK293 cells was associated with an increase in the concentration of meTIMP (fold change: 17 up to 93, P < 0.001) but, unexpectedly, also of 6-thioguanosine monophosphate (fold change: 2.6 up to 5.0, P < 0.001). CONCLUSIONS:: These data question the general view of IMPDH as the rate-limiting enzyme in the phosphorylation of thiopurines. Investigations of other mechanisms are needed to more fully explain the various metabolite patterns and outcomes in patients under treatment
    corecore