48 research outputs found

    Type-3 Secretion System-induced pyroptosis protects Pseudomonas against cell-autonomous immunity

    Get PDF
    Inflammasome-induced pyroptosis comprises a key cell-autonomous immune process against intracellular bacteria, namely the generation of dying cell structures. These so-called pore-induced intracellular traps (PITs) entrap and weaken intracellular microbes. However, the immune importance of pyroptosis against extracellular pathogens remains unclear. Here, we report that Type-3 secretion system (T3SS)-expressing Pseudomonas aeruginosa ( P. aeruginosa ) escaped PIT immunity by inducing a NLRC4 inflammasome-dependent macrophage pyroptosis response in the extracellular environment. To the contrary, phagocytosis of Salmonella Typhimurium promoted NLRC4-dependent PIT formation and the subsequent bacterial caging. Remarkably, T3SS-deficient Pseudomonas were efficiently sequestered within PIT-dependent caging, which favored exposure to neutrophils. Conversely, both NLRC4 and caspase-11 deficient mice presented increased susceptibility to T3SS-deficient P. aeruginosa challenge, but not to T3SS-expressing P. aeruginosa. Overall, our results uncovered that P. aeruginosa uses its T3SS to overcome inflammasome-triggered pyroptosis, which is primarily effective against intracellular invaders. Importance Although innate immune components confer host protection against infections, the opportunistic bacterial pathogen Pseudomonas aeruginosa ( P. aeruginosa ) exploits the inflammatory reaction to thrive. Specifically the NLRC4 inflammasome, a crucial immune complex, triggers an Interleukin (IL)-1ÎČ and -18 deleterious host response to P. aeruginosa . Here, we provide evidence that, in addition to IL-1 cytokines, P. aeruginosa also exploits the NLRC4 inflammasome-induced pro-inflammatory cell death, namely pyroptosis, to avoid efficient uptake and killing by macrophages. Therefore, our study reveals that pyroptosis-driven immune effectiveness mainly depends on P. aeruginosa localization. This paves the way toward our comprehension of the mechanistic requirements for pyroptosis effectiveness upon microbial infections and may initiate targeted approaches in order to ameliorate the innate immune functions to infections. Graphical abstract Macrophages infected with T3SS-expressing P. aeruginosa die in a NLRC4-dependent manner, which allows bacterial escape from PIT-mediated cell-autonomous immunity and neutrophil efferocytosis. However, T3SS-deficient P. aeruginosa is detected by both NLRC4 and caspase-11 inflammasomes, which promotes bacterial trapping and subsequent efferocytosis of P. aeruginosa -containing-PITs by neutrophils

    Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis

    Get PDF
    The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by theCD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy,and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoringof treatment efficacy.Fil: Lastrucci, Claire. Centre National de la Recherche Scientifique; FranciaFil: Bénard, Alan. Centre National de la Recherche Scientifique; FranciaFil: Balboa, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Pingris, Karine. Centre National de la Recherche Scientifique; FranciaFil: Souriant, Shanti. Centre National de la Recherche Scientifique; FranciaFil: Poincloux, Renaud. Centre National de la Recherche Scientifique; FranciaFil: Al Saati, Talal. Inserm; FranciaFil: Rasolofo, Voahangy. Pasteur Institute in Antananarivo; MadagascarFil: Gonzålez Montaner, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Inwentarz, Sandra. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Moraña, Eduardo José. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Kondova, Ivanela. Biomedical Primate Research Centre; Países BajosFil: Verreck, Franck A. W.. Biomedical Primate Research Centre; Países BajosFil: Sasiain, María del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Neyrolles, Olivier. Centre National de la Recherche Scientifique; FranciaFil: Maridonneau Parini, Isabel. Centre National de la Recherche Scientifique; FranciaFil: Lugo Villarino, Geanncarlo. Centre National de la Recherche Scientifique; FranciaFil: Cougoule, Celine. Centre National de la Recherche Scientifique; Franci

    Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK

    Get PDF
    The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the hostÂŽs cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, JesĂșs SebastiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; Argentin

    L-Plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP-1 macrophages

    Get PDF
    Podosomes are cellular structures acting as degradation ‘hot-spots’ in monocytic cells. They appear as dot-like structures at the ventral cell surface, enriched in F-actin and actin regulators, including gelsolin and L-plastin. Gelsolin is an ubiquitous severing and capping protein, whereas L-plastin is a leukocyte-specific actin bundling protein. The presence of the capping protein CapG in podosomes has not yet been investigated. We used an innovative approach to investigate the role of these proteins in macrophage podosomes by means of nanobodies or Camelid single domain antibodies. Nanobodies directed against distinct domains of gelsolin, L-plastin or CapG were stably expressed in macrophage-like THP-1 cells. CapG was not enriched in podosomes. Gelsolin nanobodies had no effect on podosome formation or function but proved very effective in tracing distinct gelsolin populations. One gelsolin nanobody specifically targets actin-bound gelsolin and was effectively enriched in podosomes. A gelsolin nanobody that blocks gelsolin-G-actin interaction was not enriched in podosomes demonstrating that the calcium-activated and actin-bound conformation of gelsolin is a constituent of podosomes. THP-1 cells expressing inhibitory L-plastin nanobodies were hampered in their ability to form stable podosomes. Nanobodies did not perturb Ser5 phosphorylation of L-plastin although phosphorylated L-plastin was highly enriched in podosomes. Furthermore, nanobody-induced inhibition of L-plastin function gave rise to an irregular and unstable actin turnover of podosomes, resulting in diminished degradation of the underlying matrix. Altogether these results indicate that L-plastin is indispensable for podosome formation and function in macrophages

    Design and planning of a transdisciplinary investigation into farmland pollinators: rationale, co-design, and lessons learned

    Get PDF
    To provide a complete portrayal of the multiple factors negatively impacting insects in agricultural landscapes it is necessary to assess the concurrent incidence, magnitude, and interactions among multiple stressors over substantial biogeographical scales. Trans-national ecological field investigations with wide-ranging stakeholders typically encounter numerous challenges during the design planning stages, not least that the scientific soundness of a spatially replicated study design must account for the substantial geographic and climatic variation among distant sites. ‘PoshBee’ (Pan-European assessment, monitoring, and mitigation of Stressors on the Health of Bees) is a multi-partner transdisciplinary agroecological project established to investigate the suite of stressors typically encountered by pollinating insects in European agricultural landscapes. To do this, PoshBee established a network of 128 study sites across eight European countries and collected over 50 measurements and samples relating to the nutritional, toxicological, pathogenic, and landscape components of the bees’ environment. This paper describes the development process, rationale, and end-result of each aspect of the of the PoshBee field investigation. We describe the main issues and challenges encountered during the design stages and highlight a number of actions or processes that may benefit other multi-partner research consortia planning similar large-scale studies. It was soon identified that in a multi-component study design process, the development of interaction and communication networks involving all collaborators and stakeholders requires considerable time and resources. It was also necessary at each planning stage to be mindful of the needs and objectives of all stakeholders and partners, and further challenges inevitably arose when practical limitations, such as time restrictions and labour constraints, were superimposed upon prototype study designs. To promote clarity for all stakeholders, for each sub-component of the study, there should be a clear record of the rationale and reasoning that outlines how the final design transpired, what compromises were made, and how the requirements of different stakeholders were accomplished. Ultimately, multi-national agroecological field studies such as PoshBee benefit greatly from the involvement of diverse stakeholders and partners, ranging from field ecologists, project managers, policy legislators, mathematical modelers, and farmer organisations. While the execution of the study highlighted the advantages and benefits of large-scale transdisciplinary projects, the long planning period emphasized the need to formally describe a design framework that could facilitate the design process of future multi-partner collaborations

    Association between FIASMA psychotropic medications and reduced risk of intubation or death in individuals with psychiatric disorders hospitalized for severe COVID-19: an observational multicenter study

    No full text
    International audienceAbstract The acid sphingomyelinase (ASM)/ceramide system may provide a useful framework for better understanding SARS-CoV-2 infection and the repurposing of psychotropic medications functionally inhibiting the acid sphingomyelinase/ceramide system (named FIASMA psychotropic medications) against COVID-19. We examined the potential usefulness of FIASMA psychotropic medications in patients with psychiatric disorders hospitalized for severe COVID-19, in an observational multicenter study conducted at Greater Paris University hospitals. Of 545 adult inpatients, 164 (30.1%) received a FIASMA psychotropic medication upon hospital admission for COVID-19. We compared the composite endpoint of intubation or death between patients who received a psychotropic FIASMA medication at baseline and those who did not in time-to-event analyses adjusted for sociodemographic characteristics, psychiatric and other medical comorbidity, and other medications. FIASMA psychotropic medication use at baseline was significantly associated with reduced risk of intubation or death in both crude (HR = 0.42; 95%CI = 0.31–0.57; p < 0.01) and primary inverse probability weighting (IPW) (HR = 0.50; 95%CI = 0.37–0.67; p < 0.01) analyses. This association was not specific to one FIASMA psychotropic class or medication. Patients taking a FIASMA antidepressant at baseline had a significantly reduced risk of intubation or death compared with those taking a non-FIASMA antidepressant at baseline in both crude (HR = 0.57; 95%CI = 0.38–0.86; p < 0.01) and primary IPW (HR = 0.57; 95%CI = 0.37–0.87; p < 0.01) analyses. These associations remained significant in multiple sensitivity analyses. Our results show the potential importance of the ASM/ceramide system framework in COVID-19 and support the continuation of FIASMA psychotropic medications in these patients and the need of large- scale clinical trials evaluating FIASMA medications, and particularly FIASMA antidepressants, against COVID-19

    Association between benzodiazepine receptor agonist use and mortality in patients hospitalised for COVID-19: a multicentre observational study

    Get PDF
    International audienceAims To examine the association between benzodiazepine receptor agonist (BZRA) use and mortality in patients hospitalised for coronavirus disease 2019 (COVID-19). Methods A multicentre observational study was performed at Greater Paris University hospitals. The sample involved 14 381 patients hospitalised for COVID-19. A total of 686 (4.8%) inpatients received a BZRA at hospital admission at a mean daily diazepam-equivalent dose of 19.7 mg (standard deviation ( s.d. ) = 25.4). The study baseline was the date of admission, and the primary endpoint was death. We compared this endpoint between patients who received BZRAs and those who did not in time-to-event analyses adjusted for sociodemographic characteristics, medical comorbidities and other medications. The primary analysis was a Cox regression model with inverse probability weighting (IPW). Results Over a mean follow-up of 14.5 days ( s.d. = 18.1), the primary endpoint occurred in 186 patients (27.1%) who received BZRAs and in 1134 patients (8.3%) who did not. There was a significant association between BZRA use and increased mortality both in the crude analysis (hazard ratio (HR) = 3.20; 95% confidence interval (CI) = 2.74–3.74; p < 0.01) and in the IPW analysis (HR = 1.61; 95% CI = 1.31–1.98, p < 0.01), with a significant dose-dependent relationship (HR = 1.55; 95% CI = 1.08–2.22; p = 0.02). This association remained significant in sensitivity analyses. Exploratory analyses indicate that most BZRAs may be associated with an increased mortality among patients hospitalised for COVID-19, except for diazepam, which may be associated with a reduced mortality compared with any other BZRA treatment. Conclusions BZRA use may be associated with an increased mortality among patients hospitalised for COVID-19, suggesting the potential benefit of decreasing dose or tapering off gradually these medications when possible
    corecore