14 research outputs found
Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors
AbstractThe ligand binding domains of the human mineralocorticoid receptor (hMR) and glucocorticoid receptor (hGR) display a high sequence homology. Aldosterone and cortisol, the major mineralocorticoid and glucocorticoid hormones, are very closely related, leading to the cross-binding of these hormones to both receptors. The present study reports on the mechanism by which hMR and hGR are activated preferentially by their cognate hormones. We found that the ability of corticosteroids to stimulate the receptor’s transactivation function is depending on the stability of the steroid-receptor complexes. In the light of a hMR structural model we propose that contacts through the corticosteroid C21 hydroxyl group are sufficient to stabilize hMR but not hGR and that additional contacts through the C11- and C17-hydroxyl groups are required for hGR
The G-protein–gated K+ channel, IKACh, is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation
Parasympathetic regulation of sinoatrial node (SAN) pacemaker activity modulates multiple ion channels to temper heart rate. The functional role of the G-protein–activated K+ current (IKACh) in the control of SAN pacemaking and heart rate is not completely understood. We have investigated the functional consequences of loss of IKACh in cholinergic regulation of pacemaker activity of SAN cells and in heart rate control under physiological situations mimicking the fight or flight response. We used knockout mice with loss of function of the Girk4 (Kir3.4) gene (Girk4−/− mice), which codes for an integral subunit of the cardiac IKACh channel. SAN pacemaker cells from Girk4−/− mice completely lacked IKACh. Loss of IKACh strongly reduced cholinergic regulation of pacemaker activity of SAN cells and isolated intact hearts. Telemetric recordings of electrocardiograms of freely moving mice showed that heart rate measured over a 24-h recording period was moderately increased (10%) in Girk4−/− animals. Although the relative extent of heart rate regulation of Girk4−/− mice was similar to that of wild-type animals, recovery of resting heart rate after stress, physical exercise, or pharmacological β-adrenergic stimulation of SAN pacemaking was significantly delayed in Girk4−/− animals. We conclude that IKACh plays a critical role in the kinetics of heart rate recovery to resting levels after sympathetic stimulation or after direct β-adrenergic stimulation of pacemaker activity. Our study thus uncovers a novel role for IKACh in SAN physiology and heart rate regulation
Cooperation between structural elements in hormonoregulated transcription from the mouse mammary tumor virus promoter
International audienceThe mouse mammary tumor virus (MMTV) promoter is under the control of several types of regulatory agents. The proximal promoter within the long terminal repeat (LTR), from -200 to the CAP site and its regulation by steroid hormones have been extensively studied. However the precise role of sequences located upstream of this region remain unclear. We have constructed MMTV LTR deletion mutants coupled to the luciferase reporter gene and assayed their activities after transient transfection into transformed mammary epithelial cells (34i) and immortalized fibroblasts (NIH-3T3). In the absence of hormone, the MMTV promoter is almost silent, and deletions in the LTR have no significant effect on basal activity. In the presence of hormone, deletions spanning from the 5'-end to -455 have only slight effects on luciferase levels. In contrast, deletion of the region spanning from -450 to -201 leads to a dramatic decrease in transcription. A substantial decrease, more marked in 34i cells, is also clear when 90bp between -290 and -201 are deleted. At least one element cooperating positively with the glucocorticoid response element (GRE) is present between -223 and -201, as supported by the results of substitution mutation experiments. In 34i cell line, dexamethasone stimulates the MMTV LTR transcriptional activity to a level comparable to that of SV40. In contrast, in NIH-3T3 cells, MMTV promoter inducibility is weak. This results from a glucocorticoid receptor content 10-fold lower in NIH-3T3 cells than in 34i cells. Transfection of a glucocorticoid receptor expression plasmid allows recovery of a high inducibility of the MMTV promoter. This was true with all the MMTV LTR mutants studied here and suggests that NIH-3T3 cells possess all the factors necessary to cooperate with the steroid hormone in order to achieve a high transcriptional activity
Voltage-dependent calcium channels and cardiac pacemaker activity: From ionic currents to genes
The spontaneous activity of pacemaker cells in the sino-atrial node controls the heart rhythm and rate under physiological conditions. Compared to working myocardial cells, pacemaker cells express a specific array of ionic channels. The functional importance of different ionic channels in the generation and regulation of cardiac automaticity is currently subject of an extensive research effort and has long been controversial. Among families of ionic channels, Ca(2+) channels have been proposed to substantially contribute to pacemaking. Indeed, Ca(2+) channels are robustly expressed in pacemaker cells, and influence the cell beating rate. Furthermore, they are regulated by the activity of the autonomic nervous system in both a positive and negative way. In this manuscript, we will first discuss how the concept of the involvement of Ca(2+) channels in cardiac pacemaking has been proposed and then subsequently developed by the recent advent in the domain of cardiac physiology of gene-targeting techniques. Secondly, we will indicate how the specific profile of Ca(2+) channels expression in pacemaker tissue can help design drugs which selectively regulate the heart rhythm in the absence of concomitant negative inotropism. Finally, we will indicate how the new possibility to assign a specific gene activity to a given ionic channel involved in cardiac pacemaking could implement the current postgenomic research effort in the construction of the cardiac Physiome
Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes
The spontaneous activity of pacemaker cells in the sino-atrial node controls the heart rhythm and rate under physiological conditions. Compared to working myocardial cells, pacemaker cells express a specific array of ionic channels. The functional importance of different ionic channels in the generation and regulation of cardiac automaticity is currently subject of an extensive research effort and has long been controversial. Among families of ionic channels, Ca(2+) channels have been proposed to substantially contribute to pacemaking. Indeed, Ca(2+) channels are robustly expressed in pacemaker cells, and influence the cell beating rate. Furthermore, they are regulated by the activity of the autonomic nervous system in both a positive and negative way. In this manuscript, we will first discuss how the concept of the involvement of Ca(2+) channels in cardiac pacemaking has been proposed and then subsequently developed by the recent advent in the domain of cardiac physiology of gene-targeting techniques. Secondly, we will indicate how the specific profile of Ca(2+) channels expression in pacemaker tissue can help design drugs which selectively regulate the heart rhythm in the absence of concomitant negative inotropism. Finally, we will indicate how the new possibility to assign a specific gene activity to a given ionic channel involved in cardiac pacemaking could implement the current postgenomic research effort in the construction of the cardiac Physiome
Identification of Potential Pharmacological Targets by Analysis of the Comprehensive G Protein-Coupled Receptor Repertoire in the Four Cardiac Chambers
International audienc
Oxaliplatin-induced cold hypersensitivity is due to remodeling of ion channels in nociseptors
L’oxaliplatine, largement utilisé dans le traitement du cancer colorectal, est susceptible d’induire précocement des dysesthésies pharyngées et des extrémités, majorées par l’exposition au froid. Il s’agit d’une toxicité cumulative et limitante. L’efficacité des traitements actuellement disponibles est médiocre, ce qui justifie d’évaluer de nouvelles approches pharmacologiques. Le but de ce travail est de développer un modèle de souris reproduisant cette hypersensibilité au froid afin d’en étudier les mécanismes physiopathologiques. Comme chez les patients, l’administration d’oxaliplatine entraîne une amplification importante de la perception du froid chez la souris. Nous montrons que ces symptômes sont médiés par les nocicepteurs exprimant le thermorécepteur TRPM8. D’un point de vue physiopathologique, l’oxaliplatine favorise l’excitabilité de ces nocicepteurs en diminuant l’expression de plusieurs canaux potassiques (TREK1 et TRAAK en particulier), et en augmentant l’expression de canaux pro excitateurs tels que les canaux cationiques activés par l’hyperpolarisation (HCN1 notamment). Ces constatations sont confortées, au niveau comportemental, par l’analyse de la lignée de souris invalidées pour TREK1 et TRAAK et par l’utilisation de l’ivabradine, un inhibiteur pharmacologique spécifique des canaux HCNs. L’ivabradine, déjà utilisé en clinique pour le traitement de l’insuffisance cardiaque, entraîne une suppression de l’hypersensibilité au froid induite par l’oxaliplatine. L’ensemble de ces résultats suggère que l’oxaliplatine exacerbe la perception du froid en remodelant le patron d’expression de plusieurs canaux ioniques qui coordonnent la réponse au froid. Ils constituent un rationnel pour l’évaluation de l’ivabradine dans le traitement des neuropathies induites par l’oxaliplatine.The hallmark of oxaliplatin-induced neuropathy is a hypersensibility to cold that develops in nearly all patients ultimately leading to cessation of this chemotherapy treatment. To date, classical pain management strategies have failed to alleviate these painful symptoms, and hence there is a need for developing new and efficient pharmacologic agents. Here we report that, as in patients, oxaliplatin mediates a clear development of exaggerated perception of cold temperatures in mice. These symptoms are mediated by nociceptors expressing the thermoreceptor TRPM8. Mechanistically, we find that oxaliplatin promotes excitability in nociceptors drastically lowering the expression of distinct potassium channels (TREK1, TRAAK) that act as excitability brakes for cold perception, and by increasing the expression of pro-excitatory channels such as the hyperpolarisation-activated channels (HCNs). These findings are corroborated by the analysis of the TREK1-TRAAK null mice, and by the use a specific HCN channel inhibitor abolishing the oxaliplatin-induced cold hypersensibility. Collectively, these results suggest that oxaliplatin exacerbates cold perception in cold sensing neurons by transcriptionally remodeling a combination of ionic conductances that together shape the final response to cold. A direct promising clinical consequence of these findings for patients would be that the HCN inhibitor ivabradine could represent a tailored treatment for oxaliplatin-induced neuropathy